Bound states of the Schrödinger operator of a system of three bosons on a lattice
- Авторы: Lakaev S.N.1, Khalmukhamedov A.R.1, Khalkhuzhaev A.M.1
-
Учреждения:
- Samarkand State University
- Выпуск: Том 188, № 1 (2016)
- Страницы: 994-1005
- Раздел: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170680
- DOI: https://doi.org/10.1134/S0040577916070035
- ID: 170680
Цитировать
Аннотация
We consider the Hamiltonian Hµ of a system of three identical quantum particles (bosons) moving on a d-dimensional lattice ℤd, d = 1, 2, and coupled by an attractive pairwise contact potential µ < 0. We prove that the number of bound states of the corresponding Schrödinger operator Hµ(K), \(K \in \mathbb{T}^d\), is finite and establish the location and structure of its essential spectrum. We show that the bound state decays exponentially at infinity and that the eigenvalue and the corresponding bound state as functions of the quasimomentum \(K \in \mathbb{T}^d\) are regular.
Об авторах
S. Lakaev
Samarkand State University
Автор, ответственный за переписку.
Email: slakaev@mail.ru
Узбекистан, Samarkand
A. Khalmukhamedov
Samarkand State University
Email: slakaev@mail.ru
Узбекистан, Samarkand
A. Khalkhuzhaev
Samarkand State University
Email: slakaev@mail.ru
Узбекистан, Samarkand
Дополнительные файлы
