Bound states of the Schrödinger operator of a system of three bosons on a lattice
- Авторлар: Lakaev S.N.1, Khalmukhamedov A.R.1, Khalkhuzhaev A.M.1
-
Мекемелер:
- Samarkand State University
- Шығарылым: Том 188, № 1 (2016)
- Беттер: 994-1005
- Бөлім: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170680
- DOI: https://doi.org/10.1134/S0040577916070035
- ID: 170680
Дәйексөз келтіру
Аннотация
We consider the Hamiltonian Hµ of a system of three identical quantum particles (bosons) moving on a d-dimensional lattice ℤd, d = 1, 2, and coupled by an attractive pairwise contact potential µ < 0. We prove that the number of bound states of the corresponding Schrödinger operator Hµ(K), \(K \in \mathbb{T}^d\), is finite and establish the location and structure of its essential spectrum. We show that the bound state decays exponentially at infinity and that the eigenvalue and the corresponding bound state as functions of the quasimomentum \(K \in \mathbb{T}^d\) are regular.
Авторлар туралы
S. Lakaev
Samarkand State University
Хат алмасуға жауапты Автор.
Email: slakaev@mail.ru
Өзбекстан, Samarkand
A. Khalmukhamedov
Samarkand State University
Email: slakaev@mail.ru
Өзбекстан, Samarkand
A. Khalkhuzhaev
Samarkand State University
Email: slakaev@mail.ru
Өзбекстан, Samarkand
Қосымша файлдар
