Bound states of the Schrödinger operator of a system of three bosons on a lattice


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider the Hamiltonian Hµ of a system of three identical quantum particles (bosons) moving on a d-dimensional lattice ℤd, d = 1, 2, and coupled by an attractive pairwise contact potential µ < 0. We prove that the number of bound states of the corresponding Schrödinger operator Hµ(K), \(K \in \mathbb{T}^d\), is finite and establish the location and structure of its essential spectrum. We show that the bound state decays exponentially at infinity and that the eigenvalue and the corresponding bound state as functions of the quasimomentum \(K \in \mathbb{T}^d\) are regular.

Sobre autores

S. Lakaev

Samarkand State University

Autor responsável pela correspondência
Email: slakaev@mail.ru
Uzbequistão, Samarkand

A. Khalmukhamedov

Samarkand State University

Email: slakaev@mail.ru
Uzbequistão, Samarkand

A. Khalkhuzhaev

Samarkand State University

Email: slakaev@mail.ru
Uzbequistão, Samarkand

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016