Bound states of the Schrödinger operator of a system of three bosons on a lattice
- Autores: Lakaev S.N.1, Khalmukhamedov A.R.1, Khalkhuzhaev A.M.1
-
Afiliações:
- Samarkand State University
- Edição: Volume 188, Nº 1 (2016)
- Páginas: 994-1005
- Seção: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170680
- DOI: https://doi.org/10.1134/S0040577916070035
- ID: 170680
Citar
Resumo
We consider the Hamiltonian Hµ of a system of three identical quantum particles (bosons) moving on a d-dimensional lattice ℤd, d = 1, 2, and coupled by an attractive pairwise contact potential µ < 0. We prove that the number of bound states of the corresponding Schrödinger operator Hµ(K), \(K \in \mathbb{T}^d\), is finite and establish the location and structure of its essential spectrum. We show that the bound state decays exponentially at infinity and that the eigenvalue and the corresponding bound state as functions of the quasimomentum \(K \in \mathbb{T}^d\) are regular.
Sobre autores
S. Lakaev
Samarkand State University
Autor responsável pela correspondência
Email: slakaev@mail.ru
Uzbequistão, Samarkand
A. Khalmukhamedov
Samarkand State University
Email: slakaev@mail.ru
Uzbequistão, Samarkand
A. Khalkhuzhaev
Samarkand State University
Email: slakaev@mail.ru
Uzbequistão, Samarkand
Arquivos suplementares
