Bound states of the Schrödinger operator of a system of three bosons on a lattice
- 作者: Lakaev S.N.1, Khalmukhamedov A.R.1, Khalkhuzhaev A.M.1
-
隶属关系:
- Samarkand State University
- 期: 卷 188, 编号 1 (2016)
- 页面: 994-1005
- 栏目: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170680
- DOI: https://doi.org/10.1134/S0040577916070035
- ID: 170680
如何引用文章
详细
We consider the Hamiltonian Hµ of a system of three identical quantum particles (bosons) moving on a d-dimensional lattice ℤd, d = 1, 2, and coupled by an attractive pairwise contact potential µ < 0. We prove that the number of bound states of the corresponding Schrödinger operator Hµ(K), \(K \in \mathbb{T}^d\), is finite and establish the location and structure of its essential spectrum. We show that the bound state decays exponentially at infinity and that the eigenvalue and the corresponding bound state as functions of the quasimomentum \(K \in \mathbb{T}^d\) are regular.
作者简介
S. Lakaev
Samarkand State University
编辑信件的主要联系方式.
Email: slakaev@mail.ru
乌兹别克斯坦, Samarkand
A. Khalmukhamedov
Samarkand State University
Email: slakaev@mail.ru
乌兹别克斯坦, Samarkand
A. Khalkhuzhaev
Samarkand State University
Email: slakaev@mail.ru
乌兹别克斯坦, Samarkand
补充文件
