Bound states of the Schrödinger operator of a system of three bosons on a lattice


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the Hamiltonian Hµ of a system of three identical quantum particles (bosons) moving on a d-dimensional lattice ℤd, d = 1, 2, and coupled by an attractive pairwise contact potential µ < 0. We prove that the number of bound states of the corresponding Schrödinger operator Hµ(K), \(K \in \mathbb{T}^d\), is finite and establish the location and structure of its essential spectrum. We show that the bound state decays exponentially at infinity and that the eigenvalue and the corresponding bound state as functions of the quasimomentum \(K \in \mathbb{T}^d\) are regular.

作者简介

S. Lakaev

Samarkand State University

编辑信件的主要联系方式.
Email: slakaev@mail.ru
乌兹别克斯坦, Samarkand

A. Khalmukhamedov

Samarkand State University

Email: slakaev@mail.ru
乌兹别克斯坦, Samarkand

A. Khalkhuzhaev

Samarkand State University

Email: slakaev@mail.ru
乌兹别克斯坦, Samarkand

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016