Volume 192, Nº 3 (2017)
- Ano: 2017
- Artigos: 9
- URL: https://journals.rcsi.science/0040-5779/issue/view/10440
Article
Generalized Yangians and their Poisson counterparts
Resumo
By generalized Yangians, we mean Yangian-like algebras of two different classes. One class comprises the previously introduced so-called braided Yangians. Braided Yangians have properties similar to those of the reflection equation algebra. Generalized Yangians of the second class, RTT-type Yangians, are defined by the same formulas as the usual Yangians but with other quantum R-matrices. If such an R-matrix is the simplest trigonometric R-matrix, then the corresponding RTT-type Yangian is called a q-Yangian. We claim that each generalized Yangian is a deformation of the commutative algebra Sym(gl(m)[t −1]) if the corresponding R-matrix is a deformation of the flip operator. We give the explicit form of the corresponding Poisson brackets.
1243-1257
Eigenvalues of Bethe vectors in the Gaudin model
Resumo
According to the Feigin–Frenkel–Reshetikhin theorem, the eigenvalues of higher Gaudin Hamiltonians on Bethe vectors can be found using the center of an affine vertex algebra at the critical level. We recently calculated explicit Harish-Chandra images of the generators of the center in all classical types. Combining these results leads to explicit formulas for the eigenvalues of higher Gaudin Hamiltonians on Bethe vectors. The Harish-Chandra images can be interpreted as elements of classical W-algebras. By calculating classical limits of the corresponding screening operators, we elucidate a direct connection between the rings of q-characters and classical W-algebras.
1258-1281
Hurwitz numbers and products of random matrices
Resumo
We study multimatrix models, which may be viewed as integrals of products of tau functions depending on the eigenvalues of products of random matrices. We consider tau functions of the two-component Kadomtsev–Petviashvili (KP) hierarchy (semi-infinite relativistic Toda lattice) and of the B-type KP (BKP) hierarchy introduced by Kac and van de Leur. Such integrals are sometimes tau functions themselves. We consider models that generate Hurwitz numbers HE,F, where E is the Euler characteristic of the base surface and F is the number of branch points. We show that in the case where the integrands contain the product of n > 2 matrices, the integral generates Hurwitz numbers with E ≤ 2 and F ≤ n+2. Both the numbers E and F depend both on n and on the order of the factors in the matrix product. The Euler characteristic E can be either an even or an odd number, i.e., it can match both orientable and nonorientable (Klein) base surfaces depending on the presence of the tau function of the BKP hierarchy in the integrand. We study two cases, the products of complex and the products of unitary matrices.
1282-1323
An integrable hierarchy including the AKNS hierarchy and its strict version
Resumo
We present an integrable hierarchy that includes both the AKNS hierarchy and its strict version. We split the loop space g of gl2 into Lie subalgebras g≥0 and g<0 of all loops with respectively only positive and only strictly negative powers of the loop parameter. We choose a commutative Lie subalgebra C in the whole loop space s of sl2 and represent it as C = C≥0⊕C<0. We deform the Lie subalgebras C≥0 and C<0 by the respective groups corresponding to g<0 and g≥0. Further, we require that the evolution equations of the deformed generators of C≥0 and C<0 have a Lax form determined by the original splitting. We prove that this system of Lax equations is compatible and that the equations are equivalent to a set of zero-curvature relations for the projections of certain products of generators. We also define suitable loop modules and a set of equations in these modules, called the linearization of the system, from which the Lax equations of the hierarchy can be obtained. We give a useful characterization of special elements occurring in the linearization, the so-called wave matrices. We propose a way to construct a rather wide class of solutions of the combined AKNS hierarchy.
1324-1336
1337-1349
Bäcklund transformations for the Jacobi system on an ellipsoid
Resumo
We consider analogues of auto- and hetero-Bäcklund transformations for the Jacobi system on a threeaxis ellipsoid. Using the results in a Weierstrass paper, where the change of times reduces integrating the equations of motion to inverting the Abel mapping, we construct the differential Abel equations and auto-Bäcklund transformations preserving the Poisson bracket with respect to which the equations of motion written in the Weierstrass form are Hamiltonian. Transforming this bracket to the canonical form, we can construct a new integrable system on the ellipsoid with a Hamiltonian of the natural form and with a fourth-degree integral of motion in momenta.
1350-1364
Adiabatic approximation for the evolution generated by an A-uniformly pseudo-Hermitian Hamiltonian
Resumo
We discuss an adiabatic approximation for the evolution generated by an A-uniformly pseudo-Hermitian Hamiltonian H(t). Such a Hamiltonian is a time-dependent operator H(t) similar to a time-dependent Hermitian Hamiltonian G(t) under a time-independent invertible operator A. Using the relation between the solutions of the evolution equations H(t) and G(t), we prove that H(t) and H† (t) have the same real eigenvalues and the corresponding eigenvectors form two biorthogonal Riesz bases for the state space. For the adiabatic approximate solution in case of the minimum eigenvalue and the ground state of the operator H(t), we prove that this solution coincides with the system state at every instant if and only if the ground eigenvector is time-independent. We also find two upper bounds for the adiabatic approximation error in terms of the norm distance and in terms of the generalized fidelity. We illustrate the obtained results with several examples.
1365-1379
The behavior of plasma with an arbitrary degree of degeneracy of electron gas in the conductive layer
Resumo
We obtain an analytic solution of the boundary problem for the behavior (fluctuations) of an electron plasma with an arbitrary degree of degeneracy of the electron gas in the conductive layer in an external electric field. We use the kinetic Vlasov–Boltzmann equation with the Bhatnagar–Gross–Krook collision integral and the Maxwell equation for the electric field. We use the mirror boundary conditions for the reflections of electrons from the layer boundary. The boundary problem reduces to a one-dimensional problem with a single velocity. For this, we use the method of consecutive approximations, linearization of the equations with respect to the absolute distribution of the Fermi–Dirac electrons, and the conservation law for the number of particles. Separation of variables then helps reduce the problem equations to a characteristic system of equations. In the space of generalized functions, we find the eigensolutions of the initial system, which correspond to the continuous spectrum (Van Kampen mode). Solving the dispersion equation, we then find the eigensolutions corresponding to the adjoint and discrete spectra (Drude and Debye modes). We then construct the general solution of the boundary problem by decomposing it into the eigensolutions. The coefficients of the decomposition are given by the boundary conditions. This allows obtaining the decompositions of the distribution function and the electric field in explicit form.
1380-1395
Quantum effects in the transverse dielectric permittivity of a Maxwellian Plasma
Resumo
We obtain an explicit analytic expression for the transverse permittivity of Maxwellian plasma. This expression considers quantum effects due both to spatial and frequency dispersion and to the presence of an intrinsic magnetic moment in the plasma particles.
1396-1407
