Bäcklund transformations for the Jacobi system on an ellipsoid
- Авторы: Tsiganov A.V.1
-
Учреждения:
- St. Petersburg State University
- Выпуск: Том 192, № 3 (2017)
- Страницы: 1350-1364
- Раздел: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171405
- DOI: https://doi.org/10.1134/S0040577917090069
- ID: 171405
Цитировать
Аннотация
We consider analogues of auto- and hetero-Bäcklund transformations for the Jacobi system on a threeaxis ellipsoid. Using the results in a Weierstrass paper, where the change of times reduces integrating the equations of motion to inverting the Abel mapping, we construct the differential Abel equations and auto-Bäcklund transformations preserving the Poisson bracket with respect to which the equations of motion written in the Weierstrass form are Hamiltonian. Transforming this bracket to the canonical form, we can construct a new integrable system on the ellipsoid with a Hamiltonian of the natural form and with a fourth-degree integral of motion in momenta.
Ключевые слова
Об авторах
A. Tsiganov
St. Petersburg State University
Автор, ответственный за переписку.
Email: andrey.tsiganov@gmail.com
Россия, St. Petersburg
Дополнительные файлы
