Eigenvalues of Bethe vectors in the Gaudin model
- Авторы: Molev A.I.1, Mukhin E.E.2
-
Учреждения:
- School of Mathematics and Statistics
- Department of Mathematical Sciences
- Выпуск: Том 192, № 3 (2017)
- Страницы: 1258-1281
- Раздел: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171389
- DOI: https://doi.org/10.1134/S0040577917090021
- ID: 171389
Цитировать
Аннотация
According to the Feigin–Frenkel–Reshetikhin theorem, the eigenvalues of higher Gaudin Hamiltonians on Bethe vectors can be found using the center of an affine vertex algebra at the critical level. We recently calculated explicit Harish-Chandra images of the generators of the center in all classical types. Combining these results leads to explicit formulas for the eigenvalues of higher Gaudin Hamiltonians on Bethe vectors. The Harish-Chandra images can be interpreted as elements of classical W-algebras. By calculating classical limits of the corresponding screening operators, we elucidate a direct connection between the rings of q-characters and classical W-algebras.
Ключевые слова
Об авторах
A. Molev
School of Mathematics and Statistics
Автор, ответственный за переписку.
Email: alexander.molev@sydney.edu.au
Австралия, Sydney
E. Mukhin
Department of Mathematical Sciences
Email: alexander.molev@sydney.edu.au
США, Indianapolis, Indiana
Дополнительные файлы
