Dispersive deformations of the Hamiltonian structure of Euler’s equations


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Euler’s equations for a two-dimensional fluid can be written in the Hamiltonian form, where the Poisson bracket is the Lie–Poisson bracket associated with the Lie algebra of divergence-free vector fields. For the two-dimensional hydrodynamics of ideal fluids, we propose a derivation of the Poisson brackets using a reduction from the bracket associated with the full algebra of vector fields. Taking the results of some recent studies of the deformations of Lie–Poisson brackets of vector fields into account, we investigate the dispersive deformations of the Poisson brackets of Euler’s equation: we show that they are trivial up to the second order.

作者简介

M. Casati

Scuola Internazionale Superiore di Studi Avanzati

编辑信件的主要联系方式.
Email: matteo.casati@sissa.it
意大利, Trieste

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016