Dispersive deformations of the Hamiltonian structure of Euler’s equations


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Euler’s equations for a two-dimensional fluid can be written in the Hamiltonian form, where the Poisson bracket is the Lie–Poisson bracket associated with the Lie algebra of divergence-free vector fields. For the two-dimensional hydrodynamics of ideal fluids, we propose a derivation of the Poisson brackets using a reduction from the bracket associated with the full algebra of vector fields. Taking the results of some recent studies of the deformations of Lie–Poisson brackets of vector fields into account, we investigate the dispersive deformations of the Poisson brackets of Euler’s equation: we show that they are trivial up to the second order.

Авторлар туралы

M. Casati

Scuola Internazionale Superiore di Studi Avanzati

Хат алмасуға жауапты Автор.
Email: matteo.casati@sissa.it
Италия, Trieste

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016