Dispersive deformations of the Hamiltonian structure of Euler’s equations


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Euler’s equations for a two-dimensional fluid can be written in the Hamiltonian form, where the Poisson bracket is the Lie–Poisson bracket associated with the Lie algebra of divergence-free vector fields. For the two-dimensional hydrodynamics of ideal fluids, we propose a derivation of the Poisson brackets using a reduction from the bracket associated with the full algebra of vector fields. Taking the results of some recent studies of the deformations of Lie–Poisson brackets of vector fields into account, we investigate the dispersive deformations of the Poisson brackets of Euler’s equation: we show that they are trivial up to the second order.

Sobre autores

M. Casati

Scuola Internazionale Superiore di Studi Avanzati

Autor responsável pela correspondência
Email: matteo.casati@sissa.it
Itália, Trieste

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016