Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero–Moser systems, and KZB equations


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We construct twisted Calogero–Moser systems with spins as Hitchin systems derived from the Higgs bundles over elliptic curves, where the transition operators are defined by arbitrary finite-order automorphisms of the underlying Lie algebras. We thus obtain a spin generalization of the twisted D’Hoker–Phong and Bordner–Corrigan–Sasaki–Takasaki systems. In addition, we construct the corresponding twisted classical dynamical r-matrices and the Knizhnik–Zamolodchikov–Bernard equations related to the automorphisms of Lie algebras.

作者简介

A. Levin

Department of Mathematics; Institute for Theoretical and Experimental Physics

编辑信件的主要联系方式.
Email: alevin@hse.ru
俄罗斯联邦, Moscow; Moscow

M. Olshanetsky

Kharkevich Institute for Information Transmission Problems

Email: alevin@hse.ru
俄罗斯联邦, Moscow

A. Zotov

Department of Mathematics; Steklov Mathematical Institute of Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: alevin@hse.ru
俄罗斯联邦, Moscow; Moscow; Dolgoprudny, Moscow Oblast

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016