Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero–Moser systems, and KZB equations
- Авторы: Levin A.M.1,2, Olshanetsky M.A.3, Zotov A.V.1,4,5
-
Учреждения:
- Department of Mathematics
- Institute for Theoretical and Experimental Physics
- Kharkevich Institute for Information Transmission Problems
- Steklov Mathematical Institute of Russian Academy of Sciences
- Moscow Institute of Physics and Technology
- Выпуск: Том 188, № 2 (2016)
- Страницы: 1121-1154
- Раздел: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170708
- DOI: https://doi.org/10.1134/S0040577916080018
- ID: 170708
Цитировать
Аннотация
We construct twisted Calogero–Moser systems with spins as Hitchin systems derived from the Higgs bundles over elliptic curves, where the transition operators are defined by arbitrary finite-order automorphisms of the underlying Lie algebras. We thus obtain a spin generalization of the twisted D’Hoker–Phong and Bordner–Corrigan–Sasaki–Takasaki systems. In addition, we construct the corresponding twisted classical dynamical r-matrices and the Knizhnik–Zamolodchikov–Bernard equations related to the automorphisms of Lie algebras.
Об авторах
A. Levin
Department of Mathematics; Institute for Theoretical and Experimental Physics
Автор, ответственный за переписку.
Email: alevin@hse.ru
Россия, Moscow; Moscow
M. Olshanetsky
Kharkevich Institute for Information Transmission Problems
Email: alevin@hse.ru
Россия, Moscow
A. Zotov
Department of Mathematics; Steklov Mathematical Institute of Russian Academy of Sciences; Moscow Institute of Physics and Technology
Email: alevin@hse.ru
Россия, Moscow; Moscow; Dolgoprudny, Moscow Oblast
Дополнительные файлы
