Ideals generated by traces in the algebra of symplectic reflections \({H_{1,{v_{1,}}{v_2}}}\left( {{I_2}\left( {2m} \right)} \right)\)


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The associative algebra of symplectic reflections \(H: = {H_{1,{v_{1,}}{v_2}}}\left( {{I_2}\left( {2m} \right)} \right)\) based on the group generated by the root system I2(2m) depends on two parameters, ν1 and ν2. For each value of these parameters, the algebra admits an m-dimensional space of traces. A trace tr is said to be degenerate if the corresponding symmetric bilinear form Btr(x, y) = tr(xy) is degenerate. We find all values of the parameters ν1 and ν2 for which the space of traces contains degenerate traces and the algebra H consequently has a two-sided ideal. It turns out that a linear combination of degenerate traces is also a degenerate trace. For the ν1 and ν2 values corresponding to degenerate traces, we find the dimensions of the space of degenerate traces.

作者简介

S. Konstein

Tamm Theory Department; Al Farabi Science Research Institute for Experimental and Theoretical Physics

编辑信件的主要联系方式.
Email: konstein@lpi.ru
俄罗斯联邦, Moscow; Almaty

I. Tyutin

Tamm Theory Department; Tomsk State Pedagogical University

Email: konstein@lpi.ru
俄罗斯联邦, Moscow; Tomsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016