Ideals generated by traces in the algebra of symplectic reflections \({H_{1,{v_{1,}}{v_2}}}\left( {{I_2}\left( {2m} \right)} \right)\)
- 作者: Konstein S.E.1,2, Tyutin I.V.1,3
-
隶属关系:
- Tamm Theory Department
- Al Farabi Science Research Institute for Experimental and Theoretical Physics
- Tomsk State Pedagogical University
- 期: 卷 187, 编号 2 (2016)
- 页面: 706-717
- 栏目: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170586
- DOI: https://doi.org/10.1134/S004057791605007X
- ID: 170586
如何引用文章
详细
The associative algebra of symplectic reflections \(H: = {H_{1,{v_{1,}}{v_2}}}\left( {{I_2}\left( {2m} \right)} \right)\) based on the group generated by the root system I2(2m) depends on two parameters, ν1 and ν2. For each value of these parameters, the algebra admits an m-dimensional space of traces. A trace tr is said to be degenerate if the corresponding symmetric bilinear form Btr(x, y) = tr(xy) is degenerate. We find all values of the parameters ν1 and ν2 for which the space of traces contains degenerate traces and the algebra H consequently has a two-sided ideal. It turns out that a linear combination of degenerate traces is also a degenerate trace. For the ν1 and ν2 values corresponding to degenerate traces, we find the dimensions of the space of degenerate traces.
作者简介
S. Konstein
Tamm Theory Department; Al Farabi Science Research Institute for Experimental and Theoretical Physics
编辑信件的主要联系方式.
Email: konstein@lpi.ru
俄罗斯联邦, Moscow; Almaty
I. Tyutin
Tamm Theory Department; Tomsk State Pedagogical University
Email: konstein@lpi.ru
俄罗斯联邦, Moscow; Tomsk
补充文件
