Ideals generated by traces in the algebra of symplectic reflections \({H_{1,{v_{1,}}{v_2}}}\left( {{I_2}\left( {2m} \right)} \right)\)


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The associative algebra of symplectic reflections \(H: = {H_{1,{v_{1,}}{v_2}}}\left( {{I_2}\left( {2m} \right)} \right)\) based on the group generated by the root system I2(2m) depends on two parameters, ν1 and ν2. For each value of these parameters, the algebra admits an m-dimensional space of traces. A trace tr is said to be degenerate if the corresponding symmetric bilinear form Btr(x, y) = tr(xy) is degenerate. We find all values of the parameters ν1 and ν2 for which the space of traces contains degenerate traces and the algebra H consequently has a two-sided ideal. It turns out that a linear combination of degenerate traces is also a degenerate trace. For the ν1 and ν2 values corresponding to degenerate traces, we find the dimensions of the space of degenerate traces.

Авторлар туралы

S. Konstein

Tamm Theory Department; Al Farabi Science Research Institute for Experimental and Theoretical Physics

Хат алмасуға жауапты Автор.
Email: konstein@lpi.ru
Ресей, Moscow; Almaty

I. Tyutin

Tamm Theory Department; Tomsk State Pedagogical University

Email: konstein@lpi.ru
Ресей, Moscow; Tomsk

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016