Том 187, № 2 (2016)
- Жылы: 2016
- Мақалалар: 13
- URL: https://journals.rcsi.science/0040-5779/issue/view/10379
Article
Igor Viktorovich Tyutin
619-620
Conversion of second-class constraints and resolving the zero-curvature conditions in the geometric quantization theory
Аннотация
In the approach to geometric quantization based on the conversion of second-class constraints, we resolve the corresponding nonlinear zero-curvature conditions for the extended symplectic potential. From the zero-curvature conditions, we deduce new linear equations for the extended symplectic potential. We show that solutions of the new linear equations also satisfy the zero-curvature condition. We present a functional solution of these new linear equations and obtain the corresponding path integral representation. We investigate the general case of a phase superspace where boson and fermion coordinates are present on an equal basis.
621-632
Peculiarities of the electron energy spectrum in the Coulomb field of a superheavy nucleus
Аннотация
We consider the peculiarities of the electron energy spectrum in the Coulomb field of a superheavy nucleus and discuss the long history of an incorrect interpretation of this problem in the case of a pointlike nucleus and its current correct solution. We consider the spectral problem in the case of a regularized Coulomb potential. For some special regularizations, we derive an exact equation for the point spectrum in the energy interval (-m,m) and find some of its solutions numerically. We also derive an exact equation for charges yielding bound states with the energy E = -m; some call them supercritical charges. We show the existence of an infinite number of such charges. Their existence does not mean that the oneparticle relativistic quantum mechanics based on the Dirac Hamiltonian with the Coulomb field of such charges is mathematically inconsistent, although it is physically unacceptable because the spectrum of the Hamiltonian is unbounded from below. The question of constructing a consistent nonperturbative second-quantized theory remains open, and the consequences of the existence of supercritical charges from the standpoint of the possibility of constructing such a theory also remain unclear.
633-648
Free fermions, W-algebras, and isomonodromic deformations
Аннотация
We consider the theory of multicomponent free massless fermions in two dimensions and use it to construct representations of W-algebras at integer Virasoro central charges. We define the vertex operators in this theory in terms of solutions of the corresponding isomonodromy problem. We use this construction to obtain some new insights into tau functions of the multicomponent Toda-type hierarchies for the class of solutions given by the isomonodromy vertex operators and to obtain a useful representation for tau functions of isomonodromic deformations.
649-677
SU(2)/SL(2) knot invariants and Kontsevich–Soibelman monodromies
Аннотация
We review the Reshetikhin–Turaev approach for constructing noncompact knot invariants involving Rmatrices associated with infinite-dimensional representations, primarily those constructed from the Faddeev quantum dilogarithm. The corresponding formulas can be obtained from modular transformations of conformal blocks as their Kontsevich–Soibelman monodromies and are presented in the form of transcendental integrals, where the main issue is working with the integration contours. We discuss possibilities for extracting more explicit and convenient expressions that can be compared with the ordinary (compact) knot polynomials coming from finite-dimensional representations of simple Lie algebras, with their limits and properties. In particular, the quantum A-polynomials and difference equations for colored Jones polynomials are the same as in the compact case, but the equations in the noncompact case are homogeneous and have a nontrivial right-hand side for ordinary Jones polynomials.
678-694
Matter-coupled de Sitter supergravity
Аннотация
The de Sitter supergravity describes the interaction of supergravity with general chiral and vector multiplets and also one nilpotent chiral multiplet. The extra universal positive term in the potential, generated by the nilpotent multiplet and corresponding to the anti-D3 brane in string theory, is responsible for the de Sitter vacuum stability in these supergravity models. In the flat-space limit, these supergravity models include the Volkov–Akulov model with a nonlinearly realized supersymmetry. We generalize the rules for constructing the pure de Sitter supergravity action to the case of models containing other matter multiplets. We describe a method for deriving the closed-form general supergravity action with a given potential K, superpotential W, and vectormatrix fAB interacting with a nilpotent chiral multiplet. It has the potential V = eK(|F2|+|DW|2-3|W|2), where F is the auxiliary field of the nilpotent multiplet and is necessarily nonzero. The de Sitter vacuums are present under the simple condition that |F2|-3|W|2 > 0. We present an explicit form of the complete action in the unitary gauge.
695-705
Ideals generated by traces in the algebra of symplectic reflections \({H_{1,{v_{1,}}{v_2}}}\left( {{I_2}\left( {2m} \right)} \right)\)
Аннотация
The associative algebra of symplectic reflections \(H: = {H_{1,{v_{1,}}{v_2}}}\left( {{I_2}\left( {2m} \right)} \right)\) based on the group generated by the root system I2(2m) depends on two parameters, ν1 and ν2. For each value of these parameters, the algebra admits an m-dimensional space of traces. A trace tr is said to be degenerate if the corresponding symmetric bilinear form Btr(x, y) = tr(xy) is degenerate. We find all values of the parameters ν1 and ν2 for which the space of traces contains degenerate traces and the algebra H consequently has a two-sided ideal. It turns out that a linear combination of degenerate traces is also a degenerate trace. For the ν1 and ν2 values corresponding to degenerate traces, we find the dimensions of the space of degenerate traces.
706-717
Quantum mechanical model in gravity theory
Аннотация
We consider a model of a real massive scalar field defined as homogeneous on a d-dimensional sphere such that the sphere radius, time scale, and scalar field are related by the equations of the general theory of relativity. We quantize this system with three degrees of freedom, define the observables, and find dynamical mean values of observables in the regime where the scalar field mass is much less than the Planck mass.
718-729
The BRST-BV approach to massless fields adapted for the AdS/CFT correspondence
Аннотация
In the framework of the BRST-BV approach to the formulation of relativistic mechanics, we consider massless and massive fields of arbitrary spin propagating in a flat space and massless fields propagating in the AdS space. For such fields, we obtain BRST-BV Lagrangians invariant under gauge transformations. The Lagrangians and gauge transformations are constructed in terms of traceless gauge fields and traceless parameters of the gauge transformations. We consider the fields in the AdS space using the Poincaré parameterization of this space, which leads to a simple form of the BRST-BV Lagrangian. We show that in the Siegel gauge, the Lagrangian of the massless AdS fields leads to a decoupling of the equations of motion, and this substantially simplifies the study of the AdS/CFT correspondence. In a conformal algebra basis, we find a realization of the relativistic symmetries of fields and antifields in the AdS space.
730-742
Can Galileons support Lorentzian wormholes?
Аннотация
We discuss the possibility of constructing stable, static, spherically symmetric, asymptotically flat Lorentzian wormhole solutions in general relativity coupled to a generalized Galileon field π. Assuming that the Minkowski space–time is obtained at ∂π = 0, we find that there is tension between the properties of the energy–momentum tensor required to support a wormhole (violation of the average null energy conditions) and stability of the Galileon perturbations about the putative solution (absence of ghosts and gradient instabilities). In three-dimensional space–time, this tension is strong enough to rule out wormholes with the above properties. In higher dimensions, including the most physically interesting case of four-dimensional space–time, wormholes, if any, must have fairly contrived shapes.
743-752
Random walk of a “drunk company”
Аннотация
We study the collective behavior of a system of Brownian agents each of which moves orienting itself to the group as a whole. This system is the simplest model of the motion of a “united drunk company.” For such a system, we use the functional integration technique to calculate the probability of transition from one point to another and to determine the time dependence of the probability density to find a member of the “drunk company” near a given point. It turns out that the system exhibits an interesting collective behavior at large times and this behavior cannot be described by the simplest mean-field-type approximation. We also obtain an exact solution in the case where one of the agents is “sober” and moves along a given trajectory. The obtained results are used to discuss whether such systems can be described by different theoretical approaches.
753-761
Eigenfunction expansions for the Schrödinger equation with an inverse-square potential
Аннотация
We consider the one-dimensional Schrödinger equation -f″ + qκf = Ef on the positive half-axis with the potential qκ(r) = (κ2 - 1/4)r-2. For each complex number ν, we construct a solution uνκ(E) of this equation that is analytic in κ in a complex neighborhood of the interval (-1, 1) and, in particular, at the “singular” point κ = 0. For -1 < κ < 1 and real ν, the solutions uνκ(E) determine a unitary eigenfunction expansion operator Uκ,ν: L2(0,∞) → L2(R, Vκ,ν), where Vκ,ν is a positive measure on R. We show that every self-adjoint realization of the formal differential expression -∂r2 + qκ(r) for the Hamiltonian is diagonalized by the operator Uκ,ν for some ν ∈ R. Using suitable singular Titchmarsh–Weyl m-functions, we explicitly find the measures Vκ,ν and prove their continuity in κ and ν.
762-781
Weyl correspondence for a charged particle in the field of a magnetic monopole
Аннотация
We construct a generalized Weyl correspondence for an electrically charged particle in the field of the Dirac magnetic monopole. Our starting points are a global Lagrangian description of this system as a constrained system with U(1) gauge symmetry given in terms of the fiber bundle theory and a reduction of the presymplectic structure arising on the constraint surface. In contrast to the recently proposed quantization scheme based on using a quaternionic Hilbert module, the quantum operators corresponding to classical observables in our construction act in the complex Hilbert space of U(1)-equivariant functions introduced by Greub and Petry. These functions are defined on the total space of a fiber bundle that is topologically equivalent to the Hopf fibration.
782-795
