Point-of-Care Blood Glucose Testing: Post-Market Performance Assessment of the Accu-Chek Inform II Hospital-Use Glucose Meter

封面

如何引用文章

全文:

详细

Background. A point-of-care glucose testing (POCT) is an essential component of care in patients with hyperglycemia and hypoglycemia in inpatient and outpatient settings. In Russian medical facilities (MFs), conventional glucose meters designed for self-monitoring by patients with diabetes are commonly used for POCT. These home-use meters have two serious disadvantages: the first is large measurement bias and the second – they can’t be integrated into laboratory information systems, so measurement data have to be recorded into patient charts manually. Both factors may lead to medical errors. It is reasonable to use in the MFs specialized POCT glucose meters, as they are superior to conventional ones in accuracy and may be easily connected to laboratory information systems. With this in mind, physicians at the Russian Children’s Clinical Hospital decided to substitute conventional meters with the Accu-Chek Inform II POCT meter, however, after preliminary performance assessment of the model.

Aim. To test the Accu-Chek Inform II performance characteristics: accuracy, linearity, repeatability, and mean absolute relative difference (MARD).

Materials and methods. Performance of the Accu-Chek Inform II was tested by comparing the results of parallel CGL measurements with the meter and reference laboratory analyzer in capillary blood samples. Overall, 99 parallel CGL measurements were made in 45 samples. Accuracy was evaluated according to the ISO 15197-2013 and POCT12-A3 criteria.

Results. The Accu-Chek Inform II meter met the requirements of ISO 15197-2013 and POCT12-A3 and demonstrated high linearity (correlation coefficient, r=1,0), good repeatability (mean coefficient of variation, CV=1,38%) and acceptable MARD (4,9%).

Conclusion. The Accu-Chek Inform II POCT glucose meter may be efficiently and safely used in inpatient and outpatient MFs and particularly in pediatric clinics.

作者简介

Elena Petryaykina

Russian Children’s Clinical Hospital – Branch of Pirogov Russian National Research Medical University

Email: alvaltim@gmail.com
ORCID iD: 0000-0002-8520-2378

дир.

俄罗斯联邦, Moscow

Nikolay Mayanskiy

Russian Children’s Clinical Hospital – Branch of Pirogov Russian National Research Medical University

Email: alvaltim@gmail.com
ORCID iD: 0000-0001-8077-5313

рук. Центра лабораторной диагностики

俄罗斯联邦, Moscow

Elena Demina

Russian Children’s Clinical Hospital – Branch of Pirogov Russian National Research Medical University

Email: alvaltim@gmail.com
ORCID iD: 0000-0002-4396-1245

зав. эндокринологическим отд-нием

俄罗斯联邦, Moscow

Irina Karamysheva

Russian Children’s Clinical Hospital – Branch of Pirogov Russian National Research Medical University

Email: alvaltim@gmail.com

врач клинической лабораторной диагностики Центра лабораторной диагностики

俄罗斯联邦, Moscow

Kseniya Gorst

Russian Children’s Clinical Hospital – Branch of Pirogov Russian National Research Medical University

Email: alvaltim@gmail.com
ORCID iD: 0000-0002-5986-4976

врач клинической лабораторной диагностики Центра лабораторной диагностики

俄罗斯联邦, Moscow

Alexei Timofeev

Russian Children’s Clinical Hospital – Branch of Pirogov Russian National Research Medical University

编辑信件的主要联系方式.
Email: alvaltim@gmail.com
ORCID iD: 0000-0002-6861-9630

врач клинической лабораторной диагностики Центра лабораторной диагностики

俄罗斯联邦, Moscow

参考

  1. Бессонов И.С., Кузнецов В.А., Потолинская Ю.В., и др. Влияние гипергликемии на результаты чрескожных коронарных вмешательств у больных острым инфарктом миокарда с подъемом сегмента ST. Терапевтический архив. 2017;89(9):25-9 [Bessonov IS, Kuznetsov VA, Potolinskaya YuV, et al. Impact of hyperglycemia on the results of percutaneous coronary interventions in patients with acute ST-segment elevation myocardial infarction. Terapevticheskii Arkhiv (Ter. Arkh.). 2017;89(9):25-9 (in Russian)]. doi: 10.17116/terarkh201789925-29
  2. Rosinha PMO, Inácio IMR, de Moura Teixeira SM, et al. Hyperglycemia in hospitalized patients of a tertiary care hospital: prevalence and treatment in two cross-sectional evaluations (2011–2020). Arch Endocrinol Metab. 2022;66(2):214-21. doi: 10.20945/2359-3997000000452
  3. Cruz P, Blackburn MC, Tobin GS. A Systematic Approach for the Prevention and Reduction of Hypoglycemia in Hospitalized Patients. Curr Diab Rep. 2017;17(11):117. doi: 10.1007/s11892-017-0934-8
  4. International Organization for Standardization. ISO 15197:2013 In vitro diagnostic test systems requirements for blood-GLucose monitoring systems for self-testing in managing diabetes mellitus. Available at: https://www.iso.org/standard/54976.html#:~:text=ISO%2015197 %3A2013%20 specifies %20requirements,performance%20by%20the%20intended%20users/ Accessed: 29.11.2023.
  5. ГОСТ Р ИСО 15197-2015. Национальный стандарт Российской Федерации «Тест-системы для диагностики in vitro. Требования к системам мониторинга глюкозы в крови для самоконтроля при лечении сахарного диабета». Федеральное агентство по техническому регулированию и метрологии. М.: Стандартинформ, 2015. Режим доступа: https://docs.cntd.ru/document/1200120137. Ссылка активна на 29.11.2023 [GOST R ISO 15197-2015. Natsional'nyi standart Rossiiskoi Federatsii “Test-sistemy dlia diagnostiki in vitro. Trebovaniia k sistemam monitoringa gliukozy v krovi dlia samokontrolia pri lechenii sakharnogo diabeta”. Federal'noe agentstvo po tekhnicheskomu regulirovaniiu i metrologii. Moscow: Standartinform, 2015. Available at: https://docs.cntd.ru/document/1200120137. Accessed: 29.11.2023 (in Russian)].
  6. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307-10.
  7. Clarke WL, Cox D, Gonder-Frederick LA, et al. Evaluating clinical accuracy of systems for self-monitoring of blood GLucose. Diabetes Care. 1987;10(5):622-8. doi: 10.2337/diacare.10.5.622
  8. Parkes JL, Slatin SL, Pardo S, Ginsberg BH. A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose. Diabetes Care. 2000;23(8):1143-8. doi: 10.2337/diacare.23.8.1143
  9. Kovatchev BP, Wakeman CA, Breton MD, et al. Computing the surveillance error grid analysis: procedure and examples. J Diabetes Sci Technol. 2014;8(4):673-84. doi: 10.1177/1932296814539590
  10. Blood glucose Monitoring System Surveillance Program. Available at: https://www.diabetestechnology.org/seg.shtml. Accessed: 29.11.2023.
  11. CLSI. Point-of-Care Blood Glucose Testing in Acute and Chronic Care Facilities; Approved Guideline – Third Edition. CLSI document POCT12-A3. Wayne, PA, Clinical and Laboratory Standards Institute. 2013. Available at: https://clsi.org/standards/products/point-of-care-testing/documents/poct12. Accessed: 29.11.2023.
  12. Freckmann G, Mende J, Pleus S, et al. Mean Absolute Relative Difference of Blood GLucose Monitoring Systems and Relationship to ISO 15197. J Diabetes Sci Technol. 2022;16(5):1089-95. doi: 10.1177/19322968211001402
  13. Тимофеев А.В., Хайбулина Э.Т., Мамонов Р.А., Горст К.А. Проверка аналитических характеристик трех моделей глюкометров. Клиническая лабораторная диагностика. 2016;21(1):39-45 [Timofeev AV, Khaibulina ET, Mamonov RA, Gorst KA. Proverka analiticheskikh kharakteristik trekh modelei gliukometrov. Klinicheskaia laboratornaia diagnostika. 2016;21(1):39-45 (in Russian)].
  14. Mitsios JV, Ashby LA, Haverstick DM, et al. Analytic evaluation of a new glucose meter system in 15 different critical care settings. J Diabetes Sci Technol. 2013;7(5):1282-7. doi: 10.1177/193229681300700518
  15. Nichols JH, Brandler ES, Fantz CR, et al. A Multicenter Evaluation of a Point-of-Care Blood Glucose Meter System in Critically Ill Patients. J Appl Lab Med. 2021;6(4):820-33. doi: 10.1093/jalm/jfab005
  16. WMA Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects. Adopted by the 18th WMA General Assembly, Helsinki, Finland, June 1964 and amended by the 64th WMA General Assembly, Fortaleza, Brazil, October 2013. Available at: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects. Accessed: 29.11.2023.
  17. Федеральный закон Российской Федерации №323-ФЗ от 21 ноября 2011 г. «Об основах охраны здоровья граждан в Российской Федерации». Режим доступа: http://publication.pravo.gov.ru/Document/View/0001201111220007. Ссылка активна на 29.11.2023 [Federal law of the Russian Federation 323-FZ of 21 November 2011. “Basic principles of health care in the Russian Federation”. Available at: http://publication.pravo.gov.ru/Document/View/0001201111220007. Accessed: 29.11.2023 (in Russian)].
  18. MedCalc® Statistical Software version 22.016. MedCalc Software Ltd, Ostend, Belgium. Available at: https://www.medcalc.org. Accessed: 29.11.2023.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Bland–Altman plot for blood glucose meter X. In 440 blood samples, CGL was measured simultaneously using a blood glucose meter and a reference analyzer. For each pair of measurements, the deviation of the glucose meter result from the analyzer result (triangles) was calculated. Solid lines are the limits of permissible deviations according to GOST 15197. The dotted line is a hypothetical line of zero deviations (a perfect match of all glucose meter results with all corresponding analyzer results).

下载 (135KB)
3. Fig. 2. CEG plot for blood glucose meter X. The results of 400 measurements of CGL using a glucose meter are plotted on the CEG plot. Each glucose meter result is compared with the result of the reference analyzer. The plot shows 5 zones with different risk degrees.

下载 (148KB)
4. Fig. 3. Demonstration of SEG plot on the SEG Software website [10]. The results of 600 measurements of CGL using a glucose meter are plotted on the SEG plot. Each glucose meter result is compared with the analyzer result. The plot shows 5 zones with different risk degrees. Green = zero risk, yellow = negligible risk, orange = moderate risk, red = high risk, brown = very high risk.

下载 (137KB)
5. Fig. 4. Assessment of the Accu-Chek Inform II glucose meter analytical accuracy compliance with the ISO 15197. The dotted line is a line of the perfect match between the results of the Accu-Chek Inform II glucose meter and the analyzer. Thin solid lines are the limits of the range of permissible deviations according to ISO 15197. The arrow indicates an out-of-range result. The X-axis is CGL measured by the analyzer, mmol/L. The Y-axis is a difference between CGL measured by the Inform glucose meter and analyzer, mmol/L.

下载 (125KB)
6. Fig. 5. Assessment of the Accu-Chek Inform II glucose meter clinical accuracy compliance with the ISO 15197. The dotted line is a line of the perfect match between the results of the Accu-Chek Inform II glucose meter and the analyzer. Solid lines are the boundaries of the risk zones. The X-axis is CGL measured by the analyzer, mmol/L. The Y-axis is CGL measured by the Accu-Chek Inform II glucose meter, mmol/L.

下载 (108KB)
7. Fig. 6. Assessment of the Accu-Chek Inform II glucose meter clinical accuracy according to the SEG plot.

下载 (107KB)
8. Fig 7. Assessment of the Accu-Chek Inform II analytical accuracy compliance with the POCT12-A3. The dotted line is a line of the perfect match between the results of the Accu-Chek Inform II glucose meter and the analyzer. Black lines are the limits of the range of permissible deviations according to the POCT12-A3 first requirement. Grey lines are the limits of the range of permissible deviations according to the POCT12-A3 second requirement. The arrows indicate out-of-range results. The X-axis is CGL measured by the analyzer, mmol/L; the Y-axis is the difference between CGL measured by the Accu-Chek Inform II glucose meter and the analyzer, mmol/L.

下载 (138KB)
9. Fig. 8. Assessment of the linearity of the Accu-Chek Inform II glucose meter. The solid line is a regression curve. The dotted line is a line of the perfect match between the results of the Accu-Chek Inform II and the analyzer. In the top of the figure, the regression equation is written, where r – correlation coefficient; КС – shift factor; КН – slope coefficient. The X-axis is CGL measured by the analyzer, mmol/L; the Y-axis is CGL measured by the Accu-Chek Inform II, mmol/L.

下载 (87KB)
10. Appendix_A

下载 (396KB)
11. Appendix_2

下载 (673KB)
12. Appendix_3

下载 (879KB)
13. Appendix_4

下载 (455KB)
14. Appendix_5

下载 (461KB)

版权所有 © Consilium Medicum, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-相同方式共享 4.0国际许可协议的许可。
 
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».