Glycemic variability and oxidative stress in patients with type 2 diabetes mellitus during combined glucose-lowering therapy


Cite item

Full Text

Abstract

Aim. To evaluate the impact of intensified glucose-lowering therapy on carbohydrate metabolic indicator, such as glycated hemoglobin, fasting blood glucose level (BGL) (FBGL), postprandial BGL (PBGL), and glycemic variability (GV) in patients with type 2 diabetes mellitus (T2DM) during metformin monotherapy before and 3 months after therapy intensification. Subjects and methods. The investigation enrolled 51 patients with T2DM treated with metformin 1000 mg twice daily, who failed to achieve satisfactory glycemic control. During randomization, the treatment was intensified by addition of sitagliptin 100 mg/day in Group 1 (n=25) or gliclazide MB 60 mg/day in Group 2 (n=26). Before and 3 months after the treatment, carbohydrate metabolic indicators were investigated, 24-hour BGL monitoring (continuous glucose monitoring system (GMS)) was performed, and the body’s antioxidant status was examined by determining the total antioxidant capacity of blood plasma (overall sound pressure levels (OASPL)). Results. During 3-month treatment, Group 1 had a significantly reduced FBGL compared to that before the therapy; in Group 2 this index did not change significantly. Both study groups showed a significant decrease in PBGL and glycated hemoglobin (HbA1c). The mean amplitude of glycemic excursion (MAGE) was significantly decreased in the sitagliptin intensification group. In both groups, the standard deviation (SD) reduced significantly by 26% in Group 1 and by 38% in Group 2. Both groups also displayed a significant increase in blood OASPL (p<0.05). Conclusion. The addition of sitagliptin significantly affected the change in the indicators of both the standard carbohydrate metabolism (FBGL, PBGL, and HbA1c) and GV (MAGE, SD), whereas that of gliclazide MV altered some studied parameters. OASPL significantly increased in both groups.

About the authors

S G Butaeva

ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России

Москва, Россия

A S Ametov

ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России

Москва, Россия

A V Bugrov

ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России

Москва, Россия

V V Dolgov

ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России

Москва, Россия

References

  1. Nathan R Hill, DPhil, Nick S. Oliver, Pratik Choudhary. Normal Reference Range for Mean Tissue Glucose and Glycemic Variability Derived from Continuous Glucose Monitoring for Subjects Without Diabetes in Different Ethnic Groups. Diabetes technology & therapeutics. 2011;13(9):921-928. https://doi.org/10.1089/dia.2010.0247
  2. Bonora E, Calcaterra F, Lombardi S, Bonfante N, Formentini G, Bonadonna RC, Muggeo M. Plasma glucose levels throughout the day and HbA(1c) interrelationships in type 2 diabetes:implications for treatment and monitoring of metabolic control. Diabetes Care. 2001;24(12):2023-2029. https://doi.org/10.2337/diacare.24.12.2023
  3. Standl E, Schnell O, Ceriello A. Postprandial hyperglycemia and glycemic variability:should we care? Diabetes Care. 2011;34(Suppl.2): S120-7. https://doi.org/10.2337/dc11-s206.
  4. Kashiwagi AL, Asahina T, Nishio Y. Glycation, oxidative stress, and scavenger activity:glucose metabolism and radical scavenger dysfunction in endothelial cells. Diabetes. 1996;45(Suppl.3):S84-86. https://doi.org/https://www.ncbi.nlm.nih.gov/pubmed/8674901
  5. Tonooka N, Oseid E, Zhou H, Harmon JS, Robertson RP. Glutathione peroxidase protein expression and activity in human islets isolated for transplantation. Clinical Transplantation. 2007;21(6):767-772. https://doi.org/10.1111/j.1399-0012.2007.00736.x
  6. Панкратова М.А., Пирожков С.В., Балаболкин М.И., Литвицкий П.Ф. Окислительный стресс у больных сахарным диабетом 2-ого типа с различной длительностью заболевания и разной степенью компенсации углеводного обмена. Сахарный диабет. 2006;2:12-15. https://doi.org/https://doi.org/10.14341/2072-0351-6113
  7. Nomura K, Saitoh T, Kim GU et.al. Glycemic Profiles of Healthy Individuals with Low Fasting Plasma Glucose and HbA1c. ISRN Endocrinology. Volume 2011 (2011), Article ID 435047, 6 pages https://doi.org/10.5402/2011/435047
  8. Shi C-H, Wang C, Bai R et al. Associations among glycemic excursions, glycated hemoglobin and high-sensitivity C-reactive protein in patients with poorly controlled type 2 diabetes mellitus. Experimental and Therapeutic Medicine. 2015;10(5):1937-1942. https://doi.org/10.3892/etm.2015.2730
  9. Hill N.R, Nick S.O, Choudhary P et al. Normal Reference Range for Mean Tissue Glucose and Glycemic Variability Derived from Continuous Glucose Monitoring for Subjects Without Diabetes in Different Ethnic Groups Diabetes. Technology & Therapeutics. 2011;13(9):921-928. https://doi.org/10.1089/dia.2010.0247
  10. O’Brien RC, Luo M, Balazs N et al. In-vitro and in-vivo antioxidant properties of gliclazide. Journal of Diabetes and its Complications. 2000;14:201-206. https://doi.org/10.1016/S1056-8727(00)00084-2

Copyright (c) 2017 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies