Describing Neighborhoods of 5-Vertices in a Class of 3-Polytopes with Minimum Degree 5
- Авторы: Borodin O.V.1, Ivanova A.O.1, Nikiforov D.V.1
-
Учреждения:
- Sobolev Institute of Mathematics
- Выпуск: Том 59, № 1 (2018)
- Страницы: 43-49
- Раздел: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171644
- DOI: https://doi.org/10.1134/S0037446618010056
- ID: 171644
Цитировать
Аннотация
Lebesgue proved in 1940 that each 3-polytope with minimum degree 5 contains a 5-vertex for which the set of degrees of its neighbors is majorized by one of the following sequences
(6, 6, 7, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 11)
(5, 6, 7, 7, 8), (5, 6, 6, 7, 12), (5, 6, 6, 8, 10), (5, 6, 6, 6, 17)
(5, 5, 7, 7, 13), (5, 5, 7, 8, 10), (5, 5, 6, 7, 27), (5, 5, 6, 6,∞), (5, 5, 6, 8, 15), (5, 5, 6, 9, 11)
(5, 5, 5, 7, 41), (5, 5, 5, 8, 23), (5, 5, 5, 9, 17), (5, 5, 5, 10, 14), (5, 5, 5, 11, 13).
We prove that each 3-polytope with minimum degree 5 without vertices of degree from 7 to 10 contains a 5-vertex whose set of degrees of its neighbors is majorized by one of the following sequences: (5, 6, 6, 5, ∞), (5, 6, 6, 6, 15), and (6, 6, 6, 6, 6), where all parameters are tight.
Ключевые слова
Об авторах
O. Borodin
Sobolev Institute of Mathematics
Автор, ответственный за переписку.
Email: brdnoleg@math.nsc.ru
Россия, Novosibirsk
A. Ivanova
Sobolev Institute of Mathematics
Email: brdnoleg@math.nsc.ru
Россия, Novosibirsk
D. Nikiforov
Sobolev Institute of Mathematics
Email: brdnoleg@math.nsc.ru
Россия, Novosibirsk
Дополнительные файлы
