Describing Neighborhoods of 5-Vertices in a Class of 3-Polytopes with Minimum Degree 5


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Lebesgue proved in 1940 that each 3-polytope with minimum degree 5 contains a 5-vertex for which the set of degrees of its neighbors is majorized by one of the following sequences

(6, 6, 7, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 11)

(5, 6, 7, 7, 8), (5, 6, 6, 7, 12), (5, 6, 6, 8, 10), (5, 6, 6, 6, 17)

(5, 5, 7, 7, 13), (5, 5, 7, 8, 10), (5, 5, 6, 7, 27), (5, 5, 6, 6,∞), (5, 5, 6, 8, 15), (5, 5, 6, 9, 11)

(5, 5, 5, 7, 41), (5, 5, 5, 8, 23), (5, 5, 5, 9, 17), (5, 5, 5, 10, 14), (5, 5, 5, 11, 13).

We prove that each 3-polytope with minimum degree 5 without vertices of degree from 7 to 10 contains a 5-vertex whose set of degrees of its neighbors is majorized by one of the following sequences: (5, 6, 6, 5, ∞), (5, 6, 6, 6, 15), and (6, 6, 6, 6, 6), where all parameters are tight.

Негізгі сөздер

Авторлар туралы

O. Borodin

Sobolev Institute of Mathematics

Хат алмасуға жауапты Автор.
Email: brdnoleg@math.nsc.ru
Ресей, Novosibirsk

A. Ivanova

Sobolev Institute of Mathematics

Email: brdnoleg@math.nsc.ru
Ресей, Novosibirsk

D. Nikiforov

Sobolev Institute of Mathematics

Email: brdnoleg@math.nsc.ru
Ресей, Novosibirsk

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018