Describing Neighborhoods of 5-Vertices in a Class of 3-Polytopes with Minimum Degree 5
- Авторлар: Borodin O.V.1, Ivanova A.O.1, Nikiforov D.V.1
-
Мекемелер:
- Sobolev Institute of Mathematics
- Шығарылым: Том 59, № 1 (2018)
- Беттер: 43-49
- Бөлім: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171644
- DOI: https://doi.org/10.1134/S0037446618010056
- ID: 171644
Дәйексөз келтіру
Аннотация
Lebesgue proved in 1940 that each 3-polytope with minimum degree 5 contains a 5-vertex for which the set of degrees of its neighbors is majorized by one of the following sequences
(6, 6, 7, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 11)
(5, 6, 7, 7, 8), (5, 6, 6, 7, 12), (5, 6, 6, 8, 10), (5, 6, 6, 6, 17)
(5, 5, 7, 7, 13), (5, 5, 7, 8, 10), (5, 5, 6, 7, 27), (5, 5, 6, 6,∞), (5, 5, 6, 8, 15), (5, 5, 6, 9, 11)
(5, 5, 5, 7, 41), (5, 5, 5, 8, 23), (5, 5, 5, 9, 17), (5, 5, 5, 10, 14), (5, 5, 5, 11, 13).
We prove that each 3-polytope with minimum degree 5 without vertices of degree from 7 to 10 contains a 5-vertex whose set of degrees of its neighbors is majorized by one of the following sequences: (5, 6, 6, 5, ∞), (5, 6, 6, 6, 15), and (6, 6, 6, 6, 6), where all parameters are tight.
Негізгі сөздер
Авторлар туралы
O. Borodin
Sobolev Institute of Mathematics
Хат алмасуға жауапты Автор.
Email: brdnoleg@math.nsc.ru
Ресей, Novosibirsk
A. Ivanova
Sobolev Institute of Mathematics
Email: brdnoleg@math.nsc.ru
Ресей, Novosibirsk
D. Nikiforov
Sobolev Institute of Mathematics
Email: brdnoleg@math.nsc.ru
Ресей, Novosibirsk
Қосымша файлдар
