Describing Neighborhoods of 5-Vertices in a Class of 3-Polytopes with Minimum Degree 5


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Lebesgue proved in 1940 that each 3-polytope with minimum degree 5 contains a 5-vertex for which the set of degrees of its neighbors is majorized by one of the following sequences

(6, 6, 7, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 11)

(5, 6, 7, 7, 8), (5, 6, 6, 7, 12), (5, 6, 6, 8, 10), (5, 6, 6, 6, 17)

(5, 5, 7, 7, 13), (5, 5, 7, 8, 10), (5, 5, 6, 7, 27), (5, 5, 6, 6,∞), (5, 5, 6, 8, 15), (5, 5, 6, 9, 11)

(5, 5, 5, 7, 41), (5, 5, 5, 8, 23), (5, 5, 5, 9, 17), (5, 5, 5, 10, 14), (5, 5, 5, 11, 13).

We prove that each 3-polytope with minimum degree 5 without vertices of degree from 7 to 10 contains a 5-vertex whose set of degrees of its neighbors is majorized by one of the following sequences: (5, 6, 6, 5, ∞), (5, 6, 6, 6, 15), and (6, 6, 6, 6, 6), where all parameters are tight.

Ключевые слова

Об авторах

O. Borodin

Sobolev Institute of Mathematics

Автор, ответственный за переписку.
Email: brdnoleg@math.nsc.ru
Россия, Novosibirsk

A. Ivanova

Sobolev Institute of Mathematics

Email: brdnoleg@math.nsc.ru
Россия, Novosibirsk

D. Nikiforov

Sobolev Institute of Mathematics

Email: brdnoleg@math.nsc.ru
Россия, Novosibirsk

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).