Describing Neighborhoods of 5-Vertices in a Class of 3-Polytopes with Minimum Degree 5


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Lebesgue proved in 1940 that each 3-polytope with minimum degree 5 contains a 5-vertex for which the set of degrees of its neighbors is majorized by one of the following sequences

(6, 6, 7, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 11)

(5, 6, 7, 7, 8), (5, 6, 6, 7, 12), (5, 6, 6, 8, 10), (5, 6, 6, 6, 17)

(5, 5, 7, 7, 13), (5, 5, 7, 8, 10), (5, 5, 6, 7, 27), (5, 5, 6, 6,∞), (5, 5, 6, 8, 15), (5, 5, 6, 9, 11)

(5, 5, 5, 7, 41), (5, 5, 5, 8, 23), (5, 5, 5, 9, 17), (5, 5, 5, 10, 14), (5, 5, 5, 11, 13).

We prove that each 3-polytope with minimum degree 5 without vertices of degree from 7 to 10 contains a 5-vertex whose set of degrees of its neighbors is majorized by one of the following sequences: (5, 6, 6, 5, ∞), (5, 6, 6, 6, 15), and (6, 6, 6, 6, 6), where all parameters are tight.

Sobre autores

O. Borodin

Sobolev Institute of Mathematics

Autor responsável pela correspondência
Email: brdnoleg@math.nsc.ru
Rússia, Novosibirsk

A. Ivanova

Sobolev Institute of Mathematics

Email: brdnoleg@math.nsc.ru
Rússia, Novosibirsk

D. Nikiforov

Sobolev Institute of Mathematics

Email: brdnoleg@math.nsc.ru
Rússia, Novosibirsk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018