Simple finite-dimensional algebras without finite basis of identities
- Autores: Kislitsin A.V.1,2
-
Afiliações:
- Dostoevsky Omsk State University
- Altaĭ State Pedagogical University
- Edição: Volume 58, Nº 3 (2017)
- Páginas: 461-466
- Seção: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171212
- DOI: https://doi.org/10.1134/S0037446617030090
- ID: 171212
Citar
Resumo
In 1993, Shestakov posed a problem of existence of a central simple finite-dimensional algebra over a field of characteristic 0 whose identities cannot be defined by a finite set (Dniester Notebook, Problem 3.103). In 2012, Isaev and the author constructed an example that gave a positive answer to this problem. In 2015, the author constructed an example of a central simple seven-dimensional commutative algebra without finite basis of identities. In this article we continue the study of Shestakov’s problem in the case of anticommutative algebras. We construct an example of a simple seven-dimensional anticommutative algebra over a field of characteristic 0 without finite basis of identities.
Sobre autores
A. Kislitsin
Dostoevsky Omsk State University; Altaĭ State Pedagogical University
Autor responsável pela correspondência
Email: kislitsin@altspu.ru
Rússia, Omsk; Barnaul
Arquivos suplementares
