Simple finite-dimensional algebras without finite basis of identities


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In 1993, Shestakov posed a problem of existence of a central simple finite-dimensional algebra over a field of characteristic 0 whose identities cannot be defined by a finite set (Dniester Notebook, Problem 3.103). In 2012, Isaev and the author constructed an example that gave a positive answer to this problem. In 2015, the author constructed an example of a central simple seven-dimensional commutative algebra without finite basis of identities. In this article we continue the study of Shestakov’s problem in the case of anticommutative algebras. We construct an example of a simple seven-dimensional anticommutative algebra over a field of characteristic 0 without finite basis of identities.

作者简介

A. Kislitsin

Dostoevsky Omsk State University; Altaĭ State Pedagogical University

编辑信件的主要联系方式.
Email: kislitsin@altspu.ru
俄罗斯联邦, Omsk; Barnaul

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017