Simple finite-dimensional algebras without finite basis of identities
- 作者: Kislitsin A.V.1,2
-
隶属关系:
- Dostoevsky Omsk State University
- Altaĭ State Pedagogical University
- 期: 卷 58, 编号 3 (2017)
- 页面: 461-466
- 栏目: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171212
- DOI: https://doi.org/10.1134/S0037446617030090
- ID: 171212
如何引用文章
详细
In 1993, Shestakov posed a problem of existence of a central simple finite-dimensional algebra over a field of characteristic 0 whose identities cannot be defined by a finite set (Dniester Notebook, Problem 3.103). In 2012, Isaev and the author constructed an example that gave a positive answer to this problem. In 2015, the author constructed an example of a central simple seven-dimensional commutative algebra without finite basis of identities. In this article we continue the study of Shestakov’s problem in the case of anticommutative algebras. We construct an example of a simple seven-dimensional anticommutative algebra over a field of characteristic 0 without finite basis of identities.
作者简介
A. Kislitsin
Dostoevsky Omsk State University; Altaĭ State Pedagogical University
编辑信件的主要联系方式.
Email: kislitsin@altspu.ru
俄罗斯联邦, Omsk; Barnaul
补充文件
