Application of Heat Treatment to Optimize the Magnetostrictive

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The heat treatment effect of the magnetostrictive component in magnetoelectric (ME) composites consisting of a piezoelectric and magnetostrictive material has been studied. The dependence of the ME voltage coefficient on frequency was experimentally found without heat treatment and with annealing from 200 to 500°C of the AMAG493 amorphous alloy, which acted as a magnetostrictive component. It is shown that with an increase in the processing temperature of an amorphous alloy, an increase in the ME voltage coefficient is observed: the maximum value of the ME coefficient was observed at a temperature of 350°C and amounted to 29.52 V cm–1 Oe–1 at a resonance frequency of 54 kHz. It has been proven that the increase in the ME voltage coefficient occurs due to the improvement in the characteristics of the amorphous alloy during heat treatment, which leads to partial nanocrystallization of the material.

Авторлар туралы

E. Ivasheva

Yaroslav-the-Wise Novgorod State University

Email: ellen9879@yandex.ru
Veliky Novgorod, 173001 Russia

V. Leontiev

Yaroslav-the-Wise Novgorod State University

Email: ellen9879@yandex.ru
Veliky Novgorod, 173001 Russia

M. Bichurin

Yaroslav-the-Wise Novgorod State University

Email: ellen9879@yandex.ru
Veliky Novgorod, 173001 Russia

V. Koledov

Kotelnikov Institute of Radioengineering and Electronics of RAS

Хат алмасуға жауапты Автор.
Email: ellen9879@yandex.ru
Moscow, 125009 Russia

Әдебиет тізімі

  1. Bichurin M.I., Petrov V.M., Petrov R.V., Tatarenko A.S. Magnetoelectric Composites. Singapore: Pan Stanford Publishing Pte. Ltd., 2019.
  2. Nan C.-W., Bichurin M.I., Dong S. et al. // J. Appl. Phys. 2008. V. 103. № 3. P. 031101. https://doi.org/10.1063/1.2836410
  3. Wang Y., Gray D., Berry D. et al. // Adv. Mater. 2011. V. 23. № 35. P. 4111. https://doi.org/10.1002/adma.201100773
  4. Bichurin M., Petrov R., Sokolov O. et al. // Sensors. 2021. V. 21. № 18. P. 6232. https://doi.org/10.3390/s21186232
  5. Wang Y., Li J., Viehland D. // Mater. Today. 2014. V. 17. № 6. P. 269. https://doi.org/10.1016/j.mattod.2014.05.004
  6. Dong S., Liu J.-M., Cheong S.W., Ren Z. // Adv. Phys. 2015. V. 64. № 5–6. P. 519. https://doi.org/10.1080/00018732.2015.1114338
  7. Palneedi H., Annapureddy V., Priya S., Ryu J. // Actuators. 2016. V. 5. № 1. Article No. 5010009. https://doi.org/10.33990/act5010009
  8. Chu Z., Pourhosseiniasl M., Dong S. // J. Phys. D Appl. Phys. 2018. V. 51. № 24. P. 243001. https://doi.org/10.1088/1361-6463/aac29b
  9. Leung C.M., Li J., Viehland D., Zhuang X. // J. Phys. D Appl. Phys. 2018. V. 51. № 26. P. 263002. https://doi.org/10.1088/1361-6463/aac60b
  10. Deng T., Chen Z., Di W. et al. // Smart Mater. Struct. 2021. V. 30. № 8. P. 085005. https://doi.org/10.1088/1361-665X/ac0858
  11. Katakam S., Hwang J.Y., Vora H. et al. // Scripta Mater. 2012. V. 66. № 8. P. 538. https://doi.org/10.1016/j.scriptamat.2011.12.028
  12. Jiang W.H., Atzmon M. // Scripta Mater. 2006. V. 54. № 4. P. 333. https://doi.org/10.1016/j.scriptamat.2005.09.052
  13. Datta A., Nathasingh D., Martis R.J. et al. // J. Appl. Phys. 1984. V. 55. № 6. P. 1784.https://doi.org/10.1063/1.333477

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (36KB)
3.

Жүктеу (113KB)

© Е.Е. Ивашева, В.С. Леонтьев, М.И. Бичурин, В.В. Коледов, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>