Rhizosphere Effect and Bacterial Community Structure in Horizons of Podzolic Soil under Spruce Plants (Picea abies L.)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The relationships between the rhizosphere effects, allocation in soil horizons and bacterial community structure in the rhizosphere and the bulk soil of Retisol under spruce trees (Tver region, Russia) were studied. The rhizosphere factors (Rf) expressed as ratios of soil characteristics in the rhizosphere to that in the bulk soil were determined for the basic indices of microbial respiration, biomass and available nutrients pools in the top AEL (3–15 cm) and deep EL horizons (15–46 cm). The most prominent rhizosphere effects (Rf > 1.6) were revealed for microbial biomass C, basal respiration, and SOM turnover rate. Rf value for the SOM turnover rate in humus AEL horizon was approximately 1.5, while in the EL horizon it reached 6. The Rhizosphere had higher microbial diversity, with a significant contribution of both Gram-positive and Gram-negative bacteria, including representatives of Acidobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Solibacteres and Spartobacteria. The Gram-positive orders Bacillales and Clostridiales predominated in the bulk soil, with the relative contributions of more than 80 and 50% for the AEL and EL horizons, respectively. Based on the number of microbial activity indices with high Rf values (three for the lower EL horizon and only one for the upper humus AEL horizon), the rhizosphere of the lower horizon is probably more pronounced “hot spot” of biological activity than that in the top soil layer.

About the authors

I. V. Yevdokimov

Institute of Physicochemical and Biological Problems of Soil Science Russian Academy of Sciences

Author for correspondence.
Email: ilyaevd@yahoo.com
Russia, 142290, Pushchino

M. V. Semenov

Dokuchaev Soil Science Institute

Email: ilyaevd@yahoo.com
Russia, 119017, Moscow

S. S. Bykhovets

Institute of Physicochemical and Biological Problems of Soil Science Russian Academy of Sciences

Email: ilyaevd@yahoo.com
Russia, 142290, Pushchino

References

  1. Бабьева И.П., Зенова Г.М. Биология почв. М.: Изд-во Моск. ун-та, 1989. 336 с.
  2. Благодатская Е.В., Семенов М.В., Якушев А.В. Активность и биомасса почвенных микроорганизмов в изменяющихся условиях окружающей среды. М.: Товарищество научных изданий КМК, 2016. 243 с.
  3. Евдокимов И.В. Динамика ризосферного эффекта в почве // Почвоведение. 2013. № 6. С. 715–724.
  4. Евдокимов И.В., Юсупов И.А., Ларионова А.А., Быховец С.С., Глаголев М.В., Шавнин С.А. Тепловое воздействие факела попутного газа на биологическую активность почвы // Почвоведение. 2017. № 12. С. 1485–1493.
  5. Семенов М.В., Манучарова Н.А., Краснов Г.С., Никитин Д.А., Степанов А.Л. Биомасса и таксономическая структура микробных сообществ в почвах правобережья р. Оки // Почвоведение. 2019. № 8. С. 974–985.
  6. Семенов М.В., Манучарова Н.А., Степанов А.Л. Распределение метаболически активных представителей прокариот (архей и бактерий) по профилям чернозема и бурой полупустынной почвы // Почвоведение. 2016. № 2. С. 239–248.
  7. Семенов М.В., Никитин Д.А., Степанов А.Л., Семенов В.М. Структура бактериальных и грибных сообществ ризосферного и внекорневого локусов серой лесной почвы // Почвоведение. 2019. № 3. С. 355–369.
  8. Соколова Т.А., Толпешта И.И., Лысак Л.В., Завгородняя Ю.А., Чалова Т.С., Карпухин М.М., Изосимова Ю.Г. Биологические характеристики и содержание подвижных соединений Fe, Al и Si в ризосфере ели в подзолистой почве // Почвоведение. 2018. № 11. С. 1330–1339.
  9. Anderson J.P.E., Domsch K.H. A physiological method for the quantitative measurement of microbial biomass in soils // Soil Biology & Biochemistry. 1978. V. 10. P. 215–221.
  10. Angst G., Messinger J., Greiner M., Häusler W., Hertel D., Kirfel K., Kögel-Knabner I., Leuschner C., Rethemeyer J.C.W. Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds // Soil Biology & Biochemistry. 2018. V. 122. P. 19–30.
  11. Bhattacharyya P.N., Jha D.K. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture // World J. Microbiology Biotechnology. 2012. V. 28. P. 1327–1350.
  12. Blagodatsky S.A., Heinemeyer O., Richter J. Estimating the active and total soil microbial biomass by kinetic respiration analysis // Biology and Fertility of Soils. 2000. V. 32. P. 73–81.
  13. Brinton W.F. Phospholipid fatty acid (PLFA) analysis: a robust indicator for soil health? // Agricultural Research & Technology: Open Access J. 2020. V. 24. P. 00018–00020.
  14. Brookes P.C., Landman A., Pruden G., Jenkinson D.S. Chloroform fumigation andrelease of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil // Soil Biology & Biochemistry. 1985. V. 17. P. 837–843.
  15. Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Peña A.G., Goodrich J.K., Gordon J.I., Huttley G.A. QIIME allows analysis of high-throughput community sequencing data // Nature Methods. 2010. V. 7. P. 335–336.
  16. Chen Y.M., Wang M.K., Zhuang S.Y., Chiang P.N. Chemical and physical properties of rhizosphere and bulk soils of three tea plants cultivated in Ultisols // Geoderma. 2006. V. 136. P. 378–387.
  17. Colin Y., Nicolitch O., Van Nostrand J.D., Zhou J.Z., Turpault M.P., Uroz S. Taxonomic and functional shifts in the beech rhizosphere microbiome across a natural soil toposequence // Scientific Reports. 2017. V. 7. P. 1–17.
  18. Fierer N., Schimel J.P., Holden P.A. Variations in microbial community composition through two soil depth profiles // Soil Biology & Biochemistry. 2003. V. 35. P. 167–176.
  19. Hartmann A., Rothballer M., Schmid M. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research // Plant and Soil. 2008. V. 312. P. 7–14.
  20. Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., Glöckner F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies // Nucleic Acids Research. 2013. V. 41.
  21. Kuzyakov Y., Blagodatskaya E. Microbial hotspots and hot moments in soil: Concept & review // Soil Biology & Biochemistry. 2015. V. 83. P. 184–199.
  22. Kuzyakov Y., Razavi B.S. Rhizosphere size and shape: temporal dynamics and spatial stationarity // Soil Biology & Biochemistry. 2019. V. 135. P. 343–360.
  23. Li H., Yang S., Semenov M.V., Yao F., Ye J., Bu R., Ma R., Lin J., Kurganova I., Wang X., Deng Y., Kravchenko I., Jiang Y., Kuzyakov Y. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. Global Change Biology. 2021. V. 27. P. 2763–2779.
  24. Li J., Zhou M., Alaei S., Bengtson P. Rhizosphere priming effects differ between Norway spruce (Picea abies) and Scots pine seedlings cultivated under two levels of light intensity // Soil Biology and Biochemistry. 2020. V. 145. P. 107788.
  25. Malik A.A., Martiny J.B., Brodie E.L., Martiny A.C., Treseder K.K., Allison S.D. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change // ISME J. 2020. V. 14. P. 1–9.
  26. Peixoto L., Elsgaard L., Rasmussen J., Kuzyakov Y., Banfield C.C., Dippold M.A., Olesen J.E. Decreased rhizodeposition, but increased microbial carbon stabilization with soil depth down to 3.6 m // Soil Biology & Biochemistry. 2020. V. 150. P. 108008.
  27. Philippot L., Raaijmakers J.M., Lemanceau P., Van Der Putten W.H. Going back to the roots: the microbial ecology of the rhizosphere // Nature Reviews Microbiology. 2013. V. 11. P. 789–799.
  28. Raynaud X. Soil properties are key determinants for the development of exudate gradients in a rhizosphere simulation model // Soil Biology & Biochemistry. 2010. V. 42. P. 210–219.
  29. Semenov M.V., Chernov T.I., Tkhakakhova A.K., Zhelezova A.D., Ivanova E.A., Kolganova T.V., Kutovaya O.V. Distribution of prokaryotic communities throughout the Chernozem profiles under different land uses for over a century // Applied Soil Ecology. 2018. V. 127. P. 8–18.
  30. Semenov M.V., Krasnov G.S., Semenov V.M., van Bruggen A.H. Long-term fertilization rather than plant species shapes rhizosphere and bulk soil prokaryotic communities in agroecosystems // Applied Soil Ecology. 2020. V. 154. P. 103641.
  31. Semenov M.V., Krasnov G.S., Semenov V.M., van Bruggen A.H. Mineral and Organic Fertilizers Distinctly Affect Fungal Communities in the Crop Rhizosphere // J. Fungi. 2022. V. 8. P. 251.
  32. Uroz S., Oger P., Tisserand E., Cébron A., Turpault M.P., Buée M., De Boer W., Leveau J.H.J., Frey-Klett P. Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities // Scientific Reports. 2016. V. 6. P. 1–11.
  33. Vance E.D., Brookes P.C., Jenkinson D.S. An extraction method for measuring soil microbial biomass C // Soil Biology & Biochemistry. 1987. V. 19. P. 703–707.
  34. Yang S., Wu X., Wang Z., Semenov M.V., Ye J., Yin L., Wang X., Kravchenko I., Semenov V., Kuzyakov Y., Jiang Y., Li H. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community // Soil Biology & Biochemistry. 2022. V. 172. P. 108758.
  35. Yevdokimov I.V., Ruser R., Buegger F., Marx M., Munch J.C. Microbial immobilisation of 13C rhizodeposits in rhizosphere and root-free soil under continuous 13C labelling of oats // Soil Biology & Biochemistry. 2006. V. 38. P. 1202–1211.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (89KB)
3.

Download (146KB)
4.

Download (267KB)
5.

Download (32KB)

Copyright (c) 2023 И.В. Евдокимов, М.В. Семенов, С.С. Быховец

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies