Deformation Microstructure of a Copper Single Crystal after Loading by Spherically Converging Shock Waves


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A layer by layer study of the structure of a 34-mm ball of a copper single crystal after loading by spherically converging shock waves has been performed using transmission electron microscopy. The deformation microstructure along directions \(\left\langle {100} \right\rangle \) and \(\left\langle {110} \right\rangle \) has been studied. It has been revealed that the character of the deformation microstructure substantially depends on both the direction of the shock-wave propagation and on the depth of the layer location in the sample. In the near-surface layers of the ball that are located perpendicular the \(\left\langle {100} \right\rangle \) direction, a well-pronounced cellular dislocation structure is present; in the layers located perpendicular to the \(\left\langle {110} \right\rangle \) direction, no formation of the cellular structure occurs; there is only a high density of homogeneously distributed dislocations. Regardless of the single-crystal orientation, microbands, microtwins, banded structures, and recrystallized grains are detected along with the dislocations. Dislocation vacancy loops are observed in all layers of the ball.

Sobre autores

A. Dobromyslov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: Dobromyslov@imp.uran.ru
Rússia, Ekaterinburg, 620108

N. Taluts

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: Dobromyslov@imp.uran.ru
Rússia, Ekaterinburg, 620108

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019