Diversity of transcripts of toll-like receptors in hemocytes of Planorbarius corneus mollusсs (Gastropoda, Pulmonata) uninfected and infected with Bilharziella polonica trematodes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Transcriptome of hemocytes from uninfected Planorbarius corneus snails and snails naturally infected with Bilharziella polonica (Schistosomatidae) was obtained and analyzed. Transcripts encoding all groups of immune factors previously described for other gastropods were found. Pathogen recognition molecules are the most diverse group of transcripts encoding immunity factors. Toll-like receptors of 11 types were identified. No differences in the set of toll-like receptors between infected and uninfected mollusсs were found. The data obtained expand our knowledge on immune reactions of snails to trematode invasion and make it possible to consider Planorbarius corneus as a new model for studying molluscs immune reactions.

全文:

受限制的访问

作者简介

А. Bobrovskaya

Российский государственный педагогический университет им. А.И. Герцена

Email: elenne@mail.ru

кафедра зоологии и генетики, лаборатория экспериментальной зоологии

俄罗斯联邦, наб. р. Мойки, д. 48, Санкт-Петербург, 191186

I. Orlov

Российский государственный педагогический университет им. А.И. Герцена

Email: elenne@mail.ru

кафедра зоологии и генетики, лаборатория экспериментальной зоологии

俄罗斯联邦, наб. р. Мойки, д. 48, Санкт-Петербург, 191186

E. Prokhorova

Российский государственный педагогический университет им. А.И. Герцена

编辑信件的主要联系方式.
Email: elenne@mail.ru

кафедра зоологии и генетики, лаборатория экспериментальной зоологии

俄罗斯联邦, наб. р. Мойки, д. 48, Санкт-Петербург, 191186

参考

  1. Атаев Г.Л., Прохорова Е.Е., Токмакова А.С. 2020. Защитные реакции лёгочных моллюсков при паразитарной инвазии. Паразитология 54 (2): 371–401. [Ataev N.V., Prokhorova G.L., Tsymbalenko E.E. 2020. Defense reactions of pulmonate molluscs during parasitic invasion. Parazitologiya 54 (2): 371–401. (In Russian)]. https://doi.org/10.31857/S1234567806050028.
  2. Прохорова Е.Е., Токмакова А.С., Атаев Г.Л. 2015. Реакция гемоцитов моллюсков Planorbarius corneus на ксенотрансплантат. Паразитология 49 (2): 128–132. [Prokhorova E.E., Tsymbalenko N.V., Ataev G.L. 2015. Reaction of haemocytes of the mollusk Planorbarius corneus to a xenotransplant. Parazitologiya 49 (2): 128–132. (In Russian)].
  3. Adema C.M., Loker E.S. 2015. Digenean-gastropod host associations inform on aspects of specific immunity in snails. Developmental & Comparative Immunology 48 (2): 275–283. https://doi.org/10.1016/j.dci.2014.06.014
  4. Ataev G.L., Prokhorova E.E., Kudryavtsev I.V., Polevshchikov A.V. 2016. The influence of trematode infection on the hemocyte composition in Planorbarius corneus (Gastropoda, Pulmonata). Invertebrate Survival Journal 13: 164–171. https://doi.org/10.25431/1824-307X/isj.v13i1.164-171
  5. Bowie A., O'Neill L.A. 2000. The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. Journal of Leukocyte Biology 67: 508–514. https://doi.org/10.1002/jlb.67.4.508
  6. Brown R., Soldanova M., Barrett J., Kostadinova A. 2011. Small-scale to large-scale and back: larval trematodes in Lymnaea stagnalis and Planorbarius corneus in Central Europe. Parasitology Research 108: 137–150. https://doi.org/10.1007/s00436-010-2047-z
  7. Buchfink B., Reuter K., Drost H.G. 2021. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods 18 (4): 366–368. https://doi.org/10.1038/s41592-021-01101-x
  8. Chen H., Cai X., Li R., Wu Y., Qiu H., Zheng J., Zhou D., Fang J., Wu X. 2022. A novel toll-like receptor from Crassostrea gigas is involved in innate immune response to Vibrio alginolyticus. Infection, Genetics and Evolution. Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases 97 (January): 105159. https://doi.org/10.1016/j.meegid.2021.105159
  9. Faltynkova A., Nasincova V., Kablaskova L. 2008. Larval trematodes (Digenea) of planorbid snails (Gastropoda: Pulmonata) in Central Europe: a survey of species and key to their identification. Systematic Parasitology 69: 155–178. https://doi.org/10.1007/s11230-007-9127-1
  10. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  11. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791. https://doi.org/10.1111/j.15585646.1985.tb00420.x
  12. Fu L., Niu B., Zhu Z., Wu S., Li W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28 (23): 3150–3152. https://doi.org/10.1093/bioinformatics/bts565
  13. Gerdol M., Gomez-Chiarri M., Castillo M.G., Figueras A., Fiorito G., Moreira R., Novoa B., Pallavicini A., Ponte G., Roumbedakis K., Venier P., Vastaet G.V. 2018. Immunity in Molluscs: Recognition and effector mechanisms, with a focus on Bivalvia. In: Cooper E.L. (ed.). Advances in Comparative Immunology. Cham, Switzerland, Springer International Publishing, 225–341. https://doi.org/10.1007/978-3-319-76768–0_11
  14. Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit , I. 2011. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nature Biotechnology. 29: 644–652. https://doi.org/10.1038/nbt.1883.
  15. Guillou F., Mitta G., Galinier R., Coustau C. 2007. Identification and expression of gene transcripts generated during an anti-parasitic response in Biomphalaria glabrata. Developmental and Comparative Immunology 31: 657–671. https://doi.org/10.1016/j.dci.2006.10.001
  16. Hall T.A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
  17. Hashimoto C., Hudson K.L., Anderson K.V. 1988. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52: 269–279.
  18. Janeway C.A.Jr., Medzhitov R. 2002. Innate immune recognition. Annual Review of Immunology 20: 197–216. https://doi.org/ 10.1146/annurev.immunol.20.083001.084359
  19. Jones P., Binns D., Chang H. Y., Fraser M., Li W., McAnulla C., McWilliam H., Maslen J., Mitchell A., Nuka G., Pesseat S., Quinn A. F., Sangrador-Vegas A., Scheremetjew M., Yong S. Y., Lopez R., Hunter S. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30 (9): 1236–1240. https://doi.org/10.1093/bioinformatics/btu031
  20. Kanzok S. M., Hoa N. T., Bonizzoni M., Luna C., Huang Y., Malacrida A. R., Zheng L. 2004. Origin of Toll-like receptor-mediated innate immunity. Journal of Molecular Evolution 58: 442–448. https://doi.org/10.1016/j.vetimm.2021.110265
  21. Kron N.S. 2022. In search of the Aplysia immunome: an in silico study. BMC Genomics 23 (1): 1–29. https://doi.org/10.1186/s12864-022-08780-6
  22. Kumar S., Stecher G., Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33 (7): 1870–1874. ttps://doi.org/10.1093/molbev/msw054
  23. Le S.Q., Gascuel O. 2008. An improved general amino acid replacement matrix. Molecular Biology and Evolution 25 (7): 1307–1320. https://doi.org/10.1093/molbev/msn067
  24. Lemaitre B., Nicolas E., Michaut L., Reichhart J.-M., Hoffman J.A. 1996. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973–983. https://doi.org/10.1016/S0092-8674(00)80172-5
  25. Letunic I., Khedkar S., Bork P. 2021. SMART: recent updates, new developments and status in 2020. Nucleic acids research 49 (1): 458–460. https://doi.org/10.1093/nar/gkaa937
  26. Nei M., Kumar S. 2000. Molecular Evolution and Phylogenetics. New York, Oxford University Press, 358 pp.
  27. Orlov I.A., Ataev G.L., Gourbal B., Tokmakova A.S., Bobrovskaya A.V., Prokhorova E.E. 2023. The transcriptomic analysis of Planorbarius corneus hemocytes (Gastropoda) naturally infected with Bilharziella polonica (Schistosomatidae). Developmental and Comparative Immunology 140. https://doi.org/10.1016/j.dci.2022.104607
  28. Patro R., Duggal G., Love M.I., Irizarry R.A., Kingsford C. 2017. Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods 14: 417–419. http s://doi.org/10.1038/nmeth.4197
  29. Pila E.A., Tarrabain M., Kabore A.L., Hanington P.C. 2016. A Novel Toll-Like Receptor (TLR) Influences Compatibility between the Gastropod Biomphalaria glabrata, and the Digenean Trematode Schistosoma mansoni. PLoS Pathogens 12 (3): 1–23. https://doi.org/10.1371/journal.ppat.1005513
  30. Prokhorova E.E., Tsymbalenko N.V., Ataev G.L. 2010. Expression of genes encoding defence factors in the snail Planorbarius corneus (Gastropoda, Pulmonata) infested with trematodes. Parazitologiya 44: 310–325.
  31. Ren Y., Liu H., Fu S., Dong W., Pan B., Bu W. 2021. Transcriptome-wide identification and characterization of toll-like receptors response to Vibrio anguillarum infection in Manila clam (Ruditapes philippinarum). Fish and Shellfish Immunology 111: 49–58. https://doi.org/10.1016/j.fsi.2021.01.007
  32. Saco A., Novoa B., Greco S., Gerdol M., Figueras A. 2023. Bivalves present the largest and most diversified repertoire of toll-like receptors in the animal kingdom, suggesting broad-spectrum pathogen recognition in marine waters. Molecular Biology and Evolution 40 (6): msad133. https://doi.org/10.1093/molbev/msad133
  33. Schultz J.H., Bu L., Kamel B., Adema C.M. 2020. RNA-seq: the early response of the snail Physella acuta to the digenetic trematode Echinostoma paraensei. Journal of Parasitology 106: 490–505. https://doi.org/10.1645/19–36
  34. Seppälä O., Walser J.C., Cereghetti T., Seppälä K., Salo T., Adema C.M. 2021. Transcriptome profiling of Lymnaea stagnalis (Gastropoda) for ecoimmunological research. BMC Genomics 22 (1): 144. https://doi.org/10.1186/s12864-021-07428-1
  35. Seppey M., Manni M., Zdobnov E.M. 2019. BUSCO: assessing genome assembly and annotation completeness. Methods in Molecular Biology 1962: 227–245. https://doi.org/10.1007/978-1-4939-9173-0_14
  36. Smith-Unna R., Boursnell C., Patro R., Hibberd J.M., Kelly S. 2016. TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Research 26 (8): 1134–1144. https://doi.org/10.1101/gr.196469.115
  37. Tetreau G., Pinaud S., Portet A., Galinier R., Gourbal B., Duval D. 2017. Specific pathogen recognition by multiple innate immune sensors in an invertebrate. Frontiers in Immunology 8: 1249. https://doi.org/10.3389/fimmu.2017.01249
  38. Wang P., Zhang Z., Xu Z., Guo B., Liao Z., Qi P. 2019. A novel invertebrate toll-like receptor with broad recognition spectrum from thick shell mussel Mytilus coruscus. Fish and Shellfish Immunology 89: 132–140. https://doi.org/10.1016/j.fsi.2019.03.059
  39. Wang W., Song X., Wang L., Song L. 2018. Pathogen-derived carbohydrate recognition in molluscs immune defense. International journal of molecular sciences 19 (721): 1–20. https://doi.org/10.3390/ijms19030721
  40. Żbikowska E. 2004. Infection of snails with bird schistosomes and the threat of swimmer’s itch in selected Polish lakes. Parasitology Research 92: 30–35. https://doi.org/10.1007/s00436-003-0997-0
  41. Zhang L., Li L., Zhu Y., Zhang G., Guo X. 2014. Transcriptome analysis reveals a rich gene set related to innate immunity in the Eastern oyster (Crassostrea virginica). Marine biotechnology (New York, N.Y.) 16 (1): 17–33. https://doi.org/10.1007/s10126-013-9526-z
  42. Zhao Q.P., Gao Q., Zhang Y., Li Y.W., Huang W.L., Tang C., Dong H.F. 2018. Identification of Toll-like receptor family members in Oncomelania hupensis and their role in defense against Schistosoma japonicum. Acta Tropica 181: 69–78. http s://doi.org/10.1016/j.actatropica.2018.01.008

补充文件

附件文件
动作
1. JATS XML
2. Figure 1. The number of pathogen-recognizing receptors (PRR) and adhesion molecules domains in hemocytes of the mollusk Planorbarius corneus according to BlastP (databases NCBI NR, e-value<1e-5).

下载 (261KB)
3. Figure 2. Phylogenetic reconstruction based on amino-acid sequences of TLR TIR-domain in the mollusc Planornarius corneus (PсTLR), performed by the neighbor joining method (NJ). A tree obtained by the maximum likelihood estimation method (ML) demonstrated similar topology. Bootstrep supports of 1000 replicas for NJ/ML are designated. Numbers of the used sequences in GenBank are indicated.

下载 (659KB)
4. Figure 3. Variants of the predicted TLR domain structure in hemocytes of the molluscs Planorbarius corneus (A) and relative representation of TLR transcripts in infected and uninfected molluscs (Б), expressed in TPM. Horizontal rep stripes – a signal peptide, horizontal pink stripes – the low complexity area; vertical blue stripes – transmembrane area; LRR – rich in leucine repetition; LRR_TYP – rich in leucine repetition ща the typical subfamily domain; LRR_CT – rich in leucine С-terminal repetition domain; LRR NT– rich in leucine N-terminal repetition domain; TIR – TIR-domain; Н – uninfected mollusсs; З – molluscs infected by Bilharziella polonica.

下载 (297KB)

版权所有 © Russian Academy of Sciences, 2024
##common.cookie##