Relationship between Respiration Rate and Body Weight in Arctic Copepods at Subzero Temperature

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Dependence of the respiration rate (R) on the animal’s weight (W) is described by the equation R = a Wb, where the exponential coefficient b is usually taken equal to ¾. However, several authors indicate that the value of the coefficient b may vary with temperature changes as well as during ontogeny. In the Arctic seas, copepods spend most of their lives at temperature below or close to zero. Meanwhile, there are very few measurements of respiration rate at temperatures ≤ 0°C, which does not allow us to estimate the overall R(W) dependence at these temperatures. The work was carried out in three cruises of the R/V “Akademik Mstislav Keldysh” in the Siberian Arctic seas in 2018–2020. Copepods caught from the sea were adapted to experimental temperature and placed in tightly capped vials filled with filtered sea water for 24 h. The oxygen concentration was measured with a fiber-optic oxygen probe. The results of 120 measurements of respiration rate and 111 measurements of body carbon in five species of copepods at a temperature of -1.5°C are presented. The obtained relationship between body carbon content (W) and the prosome length (L) was described by the equation W = 6.982 L3.221, and the dependence of respiration on body weight was described by the equation R = 0.077 W0.753. No effect of a subzero temperature on the coefficient b was found. The regression parameters of R(W) did not change with the ontogenetic development of Calanus glacialis.

作者简介

E. Arashkevich

Shirshov Institute of Oceanology, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: aelena@ocean.ru
俄罗斯联邦, Moscow

A. Drits

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: aelena@ocean.ru
俄罗斯联邦, Moscow

A. Pasternak

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: aelena@ocean.ru
俄罗斯联邦, Moscow

S. Frenkel

Russian Federal Research Institute of Fisheries and Oceanography

Email: aelena@ocean.ru
俄罗斯联邦, Moscow

V. Karmanov

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: aelena@ocean.ru
俄罗斯联邦, Moscow

参考

  1. Арашкевич Е.Г., Дриц А.В., Пастернак А.Ф. и др. Распределение и питание растительноядного зоопланктона в море Лаптевых // Океанология. 2018. Т. 58. № 3. С. 404–419.
  2. Винберг Г.Г. Энергетический обмен как функция массы тела у водных пойкилотермных животных // Журн. общ. биол. 1976. Т. 37. № 1. С. 56–70.
  3. Лобус Н.В., Флинт М.В., Флёрова Е.А., Щеглова Я.В. Биохимический состав и содержание энергии в зоопланктоне Карского моря // Океанология. 2020. Т. 60. № 6. С. 889–899.
  4. Cущеня Л.М. Интенсивность дыхания ракообразных. Киев: Наукова Думка, 1972. 195 с.
  5. Флинт М.В., Анисимов И.М., Арашкевич Е.Г. и др. Экосистемы Карского моря и моря Лаптевых. Материалы экспедиционных исследований 2016 и 2018 гг. М.: Издатель Ерохова И.М., 2021. 368 с.
  6. Флинт М.В., Арашкевич Е.Г., Артемьев В.А. и др. Экосистемы морей Сибирской Арктики. Материалы экспедиционных исследований 2015 и 2017 гг. М.: АПР, 2018. 232 с.
  7. Alcaraz M. Marine zooplankton and the Metabolic Theory of Ecology: is it a predictive tool? // Journal of Plankton Research. 2016. V. 38. № 3. P. 762–770. https://doi.org/10.1093/plankt/fbw012
  8. Alekseeva T.A., Zotin A.I. Standard metabolism and macrotaxonomy of Crustaceans // Biology Bulletin. 2001. V. 28. P. 157–162. https://doi.org/10.1023/A:1009415032315
  9. Almeda R., Alcaraz M., Calbet A., Saiz E. Metabolic rates and carbon budget of early developmental stages of the marine cyclopoid copepod Oithona davisae // Limnol. Oceanogr. 2011. V. 56. № 1. P. 403–414.
  10. Ashjian C.J., Campbell R.G., Welch H.E. et al. Annual cycle in abundance, distribution, and size in relation to hydrography of important copepod species in the western Arctic Ocean // Deep Sea Res. Part I. 2003. V. 50. P. 1235–1261. https://doi.org/10.1016/S0967- 0637(03)00129-8.
  11. Auel H., Klages M., Werner I. Respiration and lipid content of the Arctic copepod Calanus hyperboreus overwintering 1 m above the seafloor at 2,300 m water depth in the Fram Strait // Mar. Biol. 2003. V. 143. P. 275–282.
  12. Båmstedt U., Tande K.S. Respiration and excretion rates of Calanus glacialis in arctic waters of the Barents Sea // Mar. Biol. 1985. V. 87. P. 259–266.
  13. von Bertalanffy L. Quantitative Laws in Metabolism and Growth // Q. Rev. Biol. 1957. V. 32. № 3. P. 217–231. https://doi.org/10.1086/401873
  14. Brown J.H., Gillooly J.F., Allen A.P. et al. Toward a metabolic theory of ecology // Ecology. 2004. V. 85. P. 1771–1789.
  15. Chow G.C. Tests of equality between sets of coefficients in two linear regressions // Econometrica. 1960. V. 28. P. 591–605.
  16. Clarke A., Fraser K.P.P. Why does metabolism scale with temperature? // Funct. Ecol. 2004. V. 18. P. 243–251.
  17. Conover R.J. The feeding behaviour and respiration of some marine plank tonic Crustacea // Biol. Bull. Mar. Biol. Lab. Woods Hole. 1960. V. 119. № 3. P. 399–415.
  18. Darnis G., Fortier L. Temperature, food and the seasonal vertical migration of key arctic copepods in the thermally stratified Amundsen Gulf (Beaufort Sea, Arctic Ocean) // J. Plankton Res. 2014. P. 36. № 4. P. 1092–1108. https://doi.org/10.1093/plankt/fbu035
  19. DeLong J.P., Okie J.G., Moses M.E. et al. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life // PNAS. 2010. V. 107. № 29. P. 12941–12945. https://doi.org/10.1073/pnas.1007783107
  20. Duncan R.P., Forsyth D.M., Hone J. Testing the metabolic theory of ecology: allometric scaling exponents in mammals // Ecology. 2007. V. 88. P. 324–333.
  21. Dvoretsky V.G., Dvoretsky A.G. Regional differences of mesozooplankton communities in the Kara Sea // Cont. Shelf Res. 2015. V. 105. P. 26–41.
  22. Epp R.W., Lewis Jr. W.M. The nature and ecological significance of metabolic changes during the life history of copepods // Ecology. 1980. V. 61. № 2. P. 259–264. https://doi.org/10.2307/1935183
  23. Forest A., Galindo V., Darni, G. et al. Carbon biomass, elemental ratios (C : N) and stable isotopic composition (δ13C, δ15N) of dominant calanoid copepods during the winter-to-summer transition in the Amundsen Gulf (Arctic Ocean) // J. Plankton Res. 2010. V. 33. № 1. P. 161–178. https://doi.org/10.1093/plankt/fbq103
  24. Gillooly J.F., Brown J.H., West G.B. et al. Effects of size and temperature on metabolic rate // Science. 2001. V. 293. P. 2248–2251.
  25. Glazier D.S. Beyond the “3/4-power law”: Variation in the intra- and interspecific scaling of metabolic rate in animals // Biol. Rev. 2005. V. 80. P. 611–662. https://doi.org/10.1017/S1464793105006834
  26. Glazier D.S. Is metabolic rate a universal “pacemaker” for biological processes? // Biol. Rev. 2014. V. 90. № 2. P. 377–407. https://doi.org/10.1111/brv.12115
  27. Head E.J.H., Harris L.R. Physiological and biochemical changes in Calanus hyperboreus from Jones Sound NWT during the transition from summer feeding to overwintering condition // Polar. Biol. 1985. V. 4. P. 99–106.
  28. Hemmingsen A.M. Energy metabolism as related to body size and respiratory surfaces, and its evolution // Report of Steno Memorial Hospital (Copenhagen). 1960. V. 9. № 2. P. 1–110.
  29. Hirche H.-J. Temperature and plankton. II. Effect on respiration and swimming activity in copepods from the Greenland Sea // Mar. Biol. 1997. V. 94. № 3. P. 347–356.
  30. Hirche, H.-J., Kosobokova, K.N., Gaye-Haake, B. et al. Structure and function of contemporary food webs on Arctic shelves: a panarctic comparison. The pelagic system of the Kara Sea — communities and components of carbon flow // Prog. Oceanogr. 2006. V. 71. P. 288–313.
  31. Ikeda T., Kanno Y., Ozaki K., Shinada A. Metabolic rates of epipelagic marine copepods as a function of body mass and temperature // Mar. Biol. 2001. V. 139. P. 587–596.
  32. Ikeda T., Skjoldal H.R. Metabolism and elemental composition of zooplankton from the Barents Sea during early Arctic summer // Mar. Biol. 1989. V. 100. P. 173–183.
  33. Ivleva I.V. The dependence of crustaceans respiration rate on body mass and habitat temperature // Int. ReV. Hydrobiol. 1980. V. 65. № 1. P. 1–47.
  34. Kosobokova K., Hirche H.-J. Biomass of zooplankton in the eastern Arctic Ocean — A base line study // Prog. Oceanogr. 2009. V. 82. № 4. P. 265–280.
  35. Kosobokova K.N., Hanssen H., Hirche H.-J., Knickmeier K. Composition and distribution of zooplankton in the Laptev Sea and adjacent Nansen Basin during summer, 1993 // Polar Biol. 1998. V. 19. P. 63–76.
  36. Makarieva A.M., GorshkovV.G., Li B.-L. et al. Mean mass-specific metabolic rates are strikingly similar across life’s major domains: Evidence for life’s metabolic optimum // PNAS. 2008. V. 105. No. 44. P. 16994–16999. https://doi.org/10.1073/pnas.0802148105
  37. Pasternak A., Drits A., Arashkevich E., Flint M. Differential impact of the Khatanga and Lena (Laptev Sea) runoff on the distribution and grazing of zooplankton // Front. Mar. Sci. 2022. 9:881383. https://doi.org/10.3389/fmars.2022.881383
  38. Savage V.M., Gillooly J.F., Woodruff W.H. et al. The predominance of quarter-power scaling in biology // Funct. Ecol. V. 18. P. 257–282.
  39. Takahashi K., Nagao N, Taguchi S. Respiration of adult female Calanus hyperboreus (Copepoda) during spring in the North Water Polynya // Polar Biosci. 2002. V. 15. P. 45–51.
  40. Tande K.S., Hassel A., Slagstad D. Gonad maturation and possible life cycle strategies in Calanus finmarchicus and Calanus glacialis in the northwestern part of the Barents Sea // Marine biology of polar regions and effects of stress on marine organisms / Eds. Gray F.S., Christiansen M.E. Chichester: Wiley, 1985. P. 141–155.
  41. WarkentinM., Freese H.M., Karsten U., Schumann R. New and fast method to quantify respiration rates of bacterial and plankton communities in freshwater ecosystems by using optical oxygen sensor spots // Appl. Environ. Microbiol. 2007. V. 73. No. 21. P. 6722–6729. https://doi.org/10.1128/AEM.00405-07
  42. West G.B., Brown J.H., Enquist B.J. A general model for the origin of allometric scaling laws in biology. // Science. 1997. V. 276. P. 122–126. https://doi.org/10.1242/ jeb.01589

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##