Dvoynye metallotsianidnye (dmc) katalizatory: sintez, stroenie i mekhanizm deystviya (obzor)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Двойные металлоцианидные (double metal cyanide, DMC) катализаторы безальтернативны для использования в промышленном процессе полимеризации пропиленоксида (PO) с целью получения полипропиленоксида (PPO) со свойствами, необходимыми для специализированных применений: низкой степенью ненасыщенности, высокими молекулярными массами и гидроксильными числами. Современные промышленные образцы демонстрируют высокую эффективность, давая возможность проводить процесс с экстремально низкими загрузками - до 25 ppm, что не требует регенерации катализатора и не приводит к ухудшению свойств полимеров. Главными недостатками этих материалов являются относительно сложный синтез и чувствительность к влаге. Несмотря на то, что DMC-катализаторы известны еще с 1960-х гг., их гибридный характер и переменный состав до сих пор затрудняют исследование и выявление взаимосвязи между способом получения, составом и свойствами этих материалов. Данный литературный обзор призван систематизировать и проанализировать информацию по синтезу, строению и механизму действия DMC-катализаторов. Подробно рассмотрен как традиционный синтез, так и нетрадиционные методы получения DMC-катализаторов. Большое внимание уделено вопросам строения каталитического центра и механизма полимеризации, а также физико-химическим свойствам этих материалов, как гетерогенных катализаторов.

参考

  1. Ionescu M. Chemistry and Technology of Polyols for Polyurethanes. Shropshire: Rapra Technology, 2005.
  2. Brocas A.-L., Mantzaridis C., Tunc D., Carlotti S. Polyether synthesis: from activated or metal-free anionic ring-opening polymerization of epoxides to functionalization // Prog. Polym. Sci. 2013. V. 38. № 6. P. 845-873. https://doi.org/10.1016/j.progpolymsci.2012.09.007
  3. Herzberger J., Niederer K., Pohlit H., Seiwert J., Worm M., Wurm F.R., Frey H. Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: synthesis, novel polymer architectures, and bioconjugation // Chem. Rev. 2016. V. 116. № 4. P. 2170-2243. https://doi.org/10.1021/acs.chemrev.5b00441
  4. Valvekens P., De Vos D. Chapter 1. Double metal cyanides as heterogeneous catalysts for organic reactions. In: New Materials for Catalytic Applications / Eds. V.I. Parvulescu, E. Kemnitz. Amsterdam: Elsevier, 2016. P. 1-12.
  5. Ruiz-Bermejo M., Menor-Salván C., Osuna-Esteban S., Veintemillas-Verdaguer S. The effects of ferrous and other ions on the abiotic formation of biomolecules using aqueous aerosols and spark discharges // Orig. Life Ev. Biosph. 2007. V. 37. № 6. P. 507-521. https://doi.org/10.1007/s11084-007-9107-0
  6. Ruiz-Bermejo M., Rogero C., Menor-Salván C., Osuna-Esteban S., Martín-Gago J.Á., VeintemillasVerdaguer S. Thermal wet decomposition of Prussian blue: implications for prebiotic chemistry // Chem. Biodivers. 2009. V. 6. № 9. P. 1309-1322. https://doi.org/10.1002/cbdv.200900024
  7. Fu H., Liu C., Zhang C., Ma W., Wang K., Li Z., Lu X., Cao G. Enhanced storage of sodium ions in Prussian blue cathode material through nickel doping // J. Mater. Chem. A. 2017. V. 5. № 20. P. 9604-9610. https://doi.org/10.1039/C7TA00132K
  8. Liu S., Pan G.L., Li G.R., Gao X.P. Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries // J. Mater. Chem. A. 2015. V. 3. № 3. P. 959-962. https://doi.org/10.1039/C4TA04644G
  9. Liu J., Li X., Rykov A.I., Fan Q., Xu W., Cong W., Jin C., Tang H., Zhu K., Ganeshraja A.S., Ge R., Wang X., Wang J. Zinc-modulated Fe-Co Prussian blue analogues with well-controlled morphologies for the efficient sorption of cesium // J. Mater. Chem. A. 2017. V. 5. № 7. P. 3284-3292. https://doi.org/10.1039/C6TA10016C.
  10. Takahashi A., Tanaka H., Parajuli D., Nakamura T., Minami K., Sugiyama Y., Hakuta Y., Ohkoshi S.-I., Kawamoto T. Historical pigment exhibiting ammonia gas capture beyond standard adsorbents with adsorption sites of two kinds // J. Am. Chem. Soc. 2016. V. 138. № 20. P. 6376-6379. https://doi.org/10.1021/jacs.6b02721
  11. Kaye S.S., Long J.R. Hydrogen storage in the dehydrated Prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn) // J. Am. Chem. Soc. 2005. V. 127. № 18. P. 6506-6507. https://doi.org/10.1021/ja051168t
  12. Ferlay S., Mallah T., Ouahès R., Veillet P., Verdaguer M. A room-temperature organometallic magnet based on Prussian blue // Nature. 1995. V. 378. № 6558. P. 701-703. https://doi.org/10.1038/378701a0
  13. Milgrom J. Method of making a polyether using a double metal cyanide complex compound // Patent US № 3278457. 1966.
  14. Le-Khac B., Wang W. Double-metal cyanide catalysts which can be used to prepare polyols and the processes related thereto // Patent US № 6696383. 2004.
  15. Le-Khac B. Highly active double metal cyanide catalysts // Patent US № 5693584. 1997.
  16. Chen X., Kumbhalkar M., Fisk J., Murdoch B. In situ monitoring of double metal cyanide (DMC) catalyst synthesis by raman spectroscopy // Raman Technology for Today's Spectroscopists. 2023. V. 38. № S6. P. 5-10. 18. https://doi.org/10.56530/spectroscopy.nq1471w5
  17. An N., Li Q., Yin N., Kang M., Wang J. Effects of addition mode on Zn-Co double metal cyanide catalyst for synthesis of oligo(propylene-carbonate) diols // Appl. Organomet. Chem. 2018. V. 32. № 11. P. e4509. https://doi.org/10.1002/aoc.4509
  18. Le-Khac B., Bowman P.T., Hinney H.R. Highly active double metal cyanide complex catalysts // Patent US № 5712216. 1998.
  19. Sebastian J., Srinivas D. Effects of method of preparation on catalytic activity of Co-Zn double-metal cyanide catalysts for copolymerization of CO2 and epoxide // Appl. Catal. A: Gen. 2014. V. 482. P. 300-308. https://doi.org/10.1016/j.apcata.2014.06.007
  20. Huang Y.J., Qi G.R., Chen L.S. Effects of morphology and composition on catalytic performance of double metal cyanide complex catalyst // Appl. Catal. A: Gen. 2003. V. 240. № 1. P. 263-271. https://doi.org/10.1016/S0926-860X(02)00452-0
  21. Zhang W., Lin Q., Cheng Y., Lu L., Lin B., Pan L., Xu N. Double metal cyanide complexes synthesized by solvent-free grinding method for copolymerization of CO2 and propylene oxide // J. Appl. Polym. Sci. 2012. V. 123. № 2. P. 977-985. https://doi.org/10.1002/aP.34544
  22. Peeters A., Valvekens P., Ameloot R., Sankar G., Kirschhock C.E.A., De Vos D.E. Zn-Co double metal cyanides as heterogeneous catalysts for hydroamination: a structure-activity relationship // ACS Catal. 2013. V. 3. № 4. P. 597-607. https://doi.org/10.1021/cs300805z
  23. Peeters A., Valvekens P., Vermoortele F., Ameloot R., Kirschhock C., De Vos D. Lewis acid double metal cyanide catalysts for hydroamination of phenylacetylene // Chem. Commun. 2011. V. 47. № 14. P. 4114-4116. https://doi.org/10.1039/C0CC05335J
  24. Dharman M.M., Ahn J.-Y., Lee M.-K., Shim H.-L., Kim K.-H., Kim I., Park D.-W. Moderate route for the utilization of CO2-microwave induced copolymerization with cyclohexene oxide using highly efficient double metal cyanide complex catalysts based on Zn3[Co(CN)6]2 // Green Chem. 2008. V. 10. № 6. P. 678-684. https://doi.org/10.1039/B801132J
  25. Kim I., Byun S.H., Ha C.-S. Ring-opening polymerizations of propylene oxide by double metal cyanide catalysts prepared with ZnX2 (X = F, Cl, Br, or I) // J. Polym. Sci., Part A: Polym. Chem. 2005. V. 43. № 19. P. 4393-4404. https://doi.org/10.1002/pola.20914
  26. Kim I., Yi, M.J., Lee K.J., Park D.-W., Kim B.U., Ha C.-S. Aliphatic polycarbonate synthesis by copolymerization of carbon dioxide with epoxides over double metal cyanide catalysts prepared by using ZnX2 (X = F, Cl, Br, I) // Catal. Today. 2006. V. 111. № 3. P. 292-296. https://doi.org/10.1016/j.cattod.2005.10.039
  27. Chen S., Zhang X., Lin F., Qi G. Preparation of double metal cyanide compleces from water-insoluble zinc compounds and their catalytic performance for copolymerization of epoxide and CO2 // React. Kinet. Catal. Lett. 2007. V. 91. № 1. P. 69-75. https://doi.org/10.1007/s11144-007-4891-0
  28. Zhang X.H., Chen S., Wu X.M., Sun X.K., Liu F., Qi G.R. Highly active double metal cyanide complexes: effect of central metal and ligand on reaction of epoxide/CO2 // Chin. Chem. Lett. 2007. V. 18. № 7. P. 887-890. https://doi.org/10.1016/j.cclet.2007.05.017
  29. Combs G. Double metal cyanide complex catalysts modified with group IIA compounds // Patent WO № 1999/048607. 1999.
  30. Huang Y.-J., Zhang X.-H., Hua Z.-J., Chen S.-L., Qi G.-R. Ring-opening polymerization of propylene oxide catalyzed by a calcium-chloride-modified zinc-cobalt double metal-cyanide complex // Macromol. Chem. Phys. 2010. V. 211. № 11. P. 1229-1237. https://doi.org/10.1002/macp.200900666
  31. Dexheimer E.M., Wildeson J., Hinz W. Method of synthesizing a double metal cyanide catalyst // Patent US № 6921737. 2005.
  32. Shaobo Z., Hui J., Zhihua Z. Polymetallic cyanide complex catalyst and preparation method and application thereof // Patent CN № 110684187. 2020.
  33. Jin H., Wang R., Zhang H., Tu J. Multi-metal cyanide complex catalyst // Patent CN № 101302286. 2010.
  34. Shaobo Z., Hui J., Zhihua Z. Supported metal cyanide complex catalyst as well as preparation method and application thereof // Patent CN № 113881032. 2022.
  35. Hofmann J., Ooms P., Gupta P., Schaefer W. Improved double metal cyanide catalysts for producing polyether polyols // Patent WO № 1999/046042. 1999.
  36. Le-Khac B. Highly active double metal cyanide catalysts // Patent US № 5482908. 1996.
  37. Le-Khac B. Polyether-containing double metal cyanide catalysts // Patent US № 5545601. 1996.
  38. Lee I.K., Ha J.Y., Cao C., Park D.-W., Ha C.-S., Kim I. Effect of complexing agents of double metal cyanide catalyst on the copolymerizations of cyclohexene oxide and carbon dioxide // Catal. Today. 2009. V. 148. № 3. P. 389-397. https://doi.org/10.1016/j.cattod.2009.07.073
  39. Kim I., Ahn J.-T., Ha C.S., Yang C.S., Park I. Polymerization of propylene oxide by using double metal cyanide catalysts and the application to polyurethane elastomer // Polymer. 2003. V. 44. № 11. P. 3417-3428. https://doi.org/10.1016/S0032-3861(03)00226-X
  40. Yoon J.H., Lee I.K., Choi H.Y., Choi E.J., Yoon J.H., Shim S.E., Kim I. Double metal cyanide catalysts bearing lactate esters as eco-friendly complexing agents for the synthesis of highly pure polyols // Green Chem. 2011. V. 13. № 3. P. 631-639. https://doi.org/10.1039/C0GC00554A
  41. Wei R.-J., Zhang X.-H., Du B.-Y., Fan Z.-Q., Qi G.-R. Highly active and selective binary catalyst system for the coupling reaction of CO2 and hydrous epoxides // J. Mol. Catal. A: Chem. 2013. V. 379. №. P. 38-45. https://doi.org/10.1016/j.molcata.2013.07.014
  42. Tran C.H., Pham L.T.T., Lee Y., Jang H.B., Kim S., Kim I. Mechanistic insights on Zn(II)-Co(III) double metal cyanide-catalyzed ring-opening polymerization of epoxides // J. Catal. 2019. V. 372. P. 86-102. https://doi.org/10.1016/j.jcat.2019.02.028
  43. Schaefer W., Hofmann J., Ooms P. Double metal cyanide catalysts for producing polyether polyols // WO Patent № 2003/020796. 2003.
  44. Mellado M.M., Gonzalez M.D.B. Double metal cyanide (DMC) catalysts with crown ethers, process to produce them and applications // Patent US № 2007/0135298. 2007.
  45. Zhang M., Yang Y., Chen L. Preparation of crown ether complexing highly active double metal cyanide catalysts and copolymerization of CO2 and propylene oxide // Chinese J. Catal. 2015. V. 36. № 8. P. 1304-1311. https://doi.org/10.1016/S1872-2067(15)60868-3
  46. Lili Y., Shaobo Z., Hui J., Wang W. Preparation method of aliphatic polycarbonate catalyzed by DMC catalyst // Patent CN № 104927040. 2015.
  47. Liu H., Wang X., Gu Y., Guo W. Preparation and characterization of double metal cyanide complex catalysts // Molecules. 2003. V. 8. № 1. P. 67-73. https://doi.org/10.3390/80100067
  48. Ooms P., Hofmann J., Gupta P., Groenendaal L. Double metal cyanide catalysts for preparing poly-etherpolyols // Patent US № 6204357. 2001.
  49. Hsu Y.-C., Tsai H.-C. High-activity double-metal-cyanide catalyst // Patent US № 2021/0205799. 2021.
  50. Ooms P., Hofmann J., Gupta P., Schaefer W. Double-metal-cyanide catalysts used for preparing polyether polyols // Patent US № 6391820. 2002.
  51. Hofmann J., Gupta P., Kumpf R.-J., Ooms P., Schaefer W., Schneider M. Crystalline double metal cyanide catalysts for producing polyether polyols // Patent WO № 1999/019063. 1999.
  52. Schaefer W., Hofmann J., Ooms P. Double metal cyanide catalysts for the production of polyetherpolyols // Patent WO № 2003/020422. 2003.
  53. Ooms P., Hofmann J., Dobler M. Double metal cyanide catalysts for the preparation of polyether polyols // Patent US № 2004/0092389. 2004.
  54. Le-Khac B. Double-metal cyanide catalysts for preparing polyether polyols // Patent US № 2003/0211935. 2003.
  55. Hofmann J., Ooms P., Gupta P., Schaefer W., Lohrenz J. Double metal cyanide catalysts for producing polyether polyols // Patent WO № 2000/047649. 2000.
  56. Chruściel A., Hreczuch W., Janik J., Czaja K., Dziubek K., Flisak Z., Swinarew A. Characterization of a double metal cyanide (DMC)-type catalyst in the polyoxypropylation process: effects of catalyst concentration // Ind. Eng. Chem. Res. 2014. V. 53. № 16. P. 6636-6646. https://doi.org/10.1021/ie500031j
  57. Le-Khac B. Double metal cyanide catalysts containing functionalized polymers // Patent WO № 1998/016310. 1998.
  58. Ooms P., Hofmann J., Gupta P. Bimetallic cyanide catalysts for producing polyether polyols // Patent WO № 2000/015337. 2000.
  59. Lee S.H., Lee I.K., Ha J.Y., Jo J.K., Park I., Ha C.-S., Suh H., Kim I. Tuning of the activity and induction period of the polymerization of propylene oxide catalyzed by double metal cyanide complexes bearing β-alkoxy alcohols as complexing agents // Ind. Eng. Chem. Res. 2010. V. 49. № 9. P. 4107-4116. https://doi.org/10.1021/ie1000967
  60. O'Connor J.M., Grieve R.L. Double metal cyanide catalysts containing polyglycol ether complexing agents // Patent US № 2001/0046940. 2001.
  61. Lim J., Yun S.H., Kim M.-R., Kim I. Synthesis of polycarbonate polyols by double-metal cyanide catalyzed copolymerization of epoxide with carbon dioxide // J. Nanosci. Nanotechnol. 2017. V. 17. № 10. P. 7507-7514. https://doi.org/10.1166/jnn.2017.14796
  62. Jang J.H., Ha J.H., Kim I., Baik J.H., Hong S.C. Facile room-temperature preparation of flexible polyurethane foams from carbon dioxide based poly(ether carbonate) polyols with a reduced generation of acetaldehyde // ACS Omega. 2019. V. 4. № 5. P. 7944-7952. https://doi.org/10.1021/acsomega.9b00808
  63. Lee D.H., Ha J.H., Kim I., Baik J.H., Hong S.C. Carbon dioxide based poly(ether carbonate) polyol in bi-polyol mixtures for rigid polyurethane foams // J. Polym. Environ. 2020. V. 28. № 4. P. 1160-1168. https://doi.org/10.1007/s10924-020-01668-0
  64. Jang E.H., Kim S.A., Kim H., Tran C.H., Song H.Y., Hyun K., Seo W.J., Kim I. Access to ultra-high molecular weight poly(propylene glycol)-based polyols using double metal cyanide catalyst // Macromol. Res. 2020. V. 28. № 1. P. 82-85. https://doi.org/10.1007/s13233-020-8008-1
  65. Tran C.-H., Lee, M.-W., Lee S.-J., Choi J.-H., Lee E.-G., Choi H.-K. Kim I. Highly active heterogeneous double metal cyanide catalysts for ring-opening polymerization of cyclic monomers // Polymers. 2022. V. 14. № 12. P. 2507. https://doi.org/10.3390/polym14122507
  66. He Z., Yu S., Cai Z., Cao X., Zhang L., Huang K. Modification of ZnCoPBA by different organic ligands and its application in the cycloaddition of CO2 and epoxides // J. Chem. Sci. 2022. V. 134. № 1. P. 35. https://doi.org/10.1007/s12039-022-02034-4
  67. Tran C.H., Kim S.A., Moon Y., Lee Y., Ryu H.M., Baik J.H., Hong S.C., Kim I. Effect of dicarbonyl complexing agents on double metal cyanide catalysts toward copolymerization of CO2 and propylene oxide // Catal. Today. 2021. V. 375, P. 335-342. https://doi.org/10.1016/j.cattod.2020.01.008
  68. Tran C.H., Pham L.T.T., Jang H.B., Kim S.A., Kim I. Effect of α-, β-, γ-, and δ-dicarbonyl complexing agents on the double metal cyanide-catalyzed ring-opening polymerization of propylene oxide // Catal. Today. 2021. V. 375, P. 429-440. https://doi.org/10.1016/j.cattod.2020.01.001
  69. Verma A., Saini S., Sharma B., Verma V., Behera B., Singh R., Ganguly S.K., Ray A., Vorontsov A., Kumar U. EDTA incorporated Fe-Zn double metal cyanide catalyst for the controlled synthesis of polyoxypropylene glycol // J. Polym. Res., 2023. V. 30. № 2. P. 62. https://doi.org/10.1007/s10965-022-03407-6
  70. Verma A., Sharma B., Saini S., Behera B., Saran S., Ganguly S.K., Kumar U. Oligomeric heterogeneous double metal cyanide catalyst for one-pot ring-opening polymerization // ChemistrySelect. 2023. V. 8. № 6. P. e202204760. https://doi.org/10.1002/slct.202204760
  71. Tran C.-H., Lee M.-W., Park S.-W., Jeong J.-E., Lee S.-J., Song W., Huh P., Kim I. Heterogeneous double metal cyanide catalyzed synthesis of poly(ε-caprolactone) polyols for the preparation of thermoplastic elastomers // Catalysts. 2021. V. 11. № 9. P. 1033. https://doi.org/10.3390/catal11091033
  72. Tran C.H., Lee S.J., Moon B.-r., Lee E.-g., Choi H.-k., Kim I. Organonitriles as complexing agents for the double metal cyanide-catalyzed synthesis of polyether, polyester, and polycarbonate polyols // Catal. Today. 2023. V. 418. P. 114125. https://doi.org/10.1016/j.cattod.2023.114125
  73. Tran C.H., Choi H.-K., Lee E.-G., Moon B.-R., Song W., Kim I. Prussian blue analogs as catalysts for the fixation of CO2 to glycidol to produce glycerol carbonate and multibranched polycarbonate polyols // J. CO2 Util. 2023. V. 74. P. 102530. https://doi.org/10.1016/j.jcou.2023.102530
  74. Kim I., Kim S.A. Double metal cyanide catalyst, preparation method therefor, and method for preparing polyol // Patent WO № 2021/137632. 2021.
  75. Luinstra G.A., Nörnberg B. Process for preparing double metal cyanide catalysts and their use in polymerization reactions // Patent WO № 2016/202838. 2016.
  76. Chen S., Qi G.-R., Hua Z.-J., Yan H.-Q. Double metal cyanide complex based on Zn3[Co(CN)6]2 as highly active catalyst for copolymerization of carbon dioxide and cyclohexene oxide // J. Polym. Sci., Part A: Polym. Chem. 2004. V. 42. № 20. P. 5284-5291. https://doi.org/10.1002/pola.20334
  77. Pinilla-de Dios M., Andrés-Iglesias C., Fernández A., Salmi T., Galdámez J.R., García-Serna J. Effect of Zn/Co initial preparation ratio in the activity of double metal cyanide catalysts for propylene oxide and CO2 copolymerization // Eur. Polym. J. 2017. V. 88. P. 280-291. https://doi.org/10.1016/j.eurpolymj.2017.01.028
  78. Ahmad S.-A., Le-Khac B., Bullano G.A. Double metal cyanide catalysts // Patent US № 5900384. 1999.
  79. Wu L.-C., Yu A.-F., Zhang M., Liu B.-H., Chen L.-B. DMC catalyzed epoxide polymerization: induction period, kinetics, and mechanism // J. Appl. Polym. Sci. 2004. V. 92. № 2. P. 1302-1309. https://doi.org/10.1002/aP.20089
  80. McDaniel K.G. High productivity alkoxylation processes // Patent US № 2008/0167501. 2008.
  81. Bachmann R., Klinger M., Jupke A. Molecular weight distribution in di metal cyanide catalyzed polymerization 1: fundamental distribution for length dependent propagation constant and segments // Macromol. Theory Simul. 2021. V. 30. № 5. P. 2100012. https://doi.org/10.1002/mats.202100012
  82. Klinger M., Bachmann R., Jupke A. Molecular weight distribution in di metal cyanide catalyzed polymerization 2: numerical simulation of chain activation/deactivation and diffusion effects // Macromol. Theory Simul. 2021. V. 30. № 5. P. 2100013. https://doi.org/10.1002/mats.202100013
  83. Langanke J., Hofmann J., Gürtler C., Wolf A. Facile synthesis of formaldehyde-based polyether(-carbonate) polyols // J. Polym. Sci., Part A: Polym. Chem. 2015. V. 53. № 18. P. 2071-2074. https://doi.org/10.1002/pola.27687
  84. Ma K., Bai Q., Zhang L., Liu B. Synthesis of flame-retarding oligo(carbonate-ether) diols via double metal cyanide complex-catalyzed copolymerization of PO and CO2 using bisphenol A as a chain transfer agent // RSC Adv. 2016. V. 6. № 54. P. 48405-48410. https://doi.org/10.1039/C6RA07325E
  85. Zhang, X., Dong, J., Su, Y., Lee, E.G., Duan, Z., Kim, I., Liu, B. Construction and arm evolution of trifunctional phenolic initiator-mediated polycarbonate polyols produced by using a double metal cyanide catalyst // Polym. Chem. 2023. V. 14. № 11. P. 1263-1274. https://doi.org/10.1039/D3PY00009E
  86. Mijolovic D., Haunert A., Kunst A., Bauer S., Miao Q., Eling B. // Раtent WO № 2009/095363. 2009.
  87. Kunst A., Eling B., Loeffler A., Lutter H.-D., Han W., Mueller J. Polyether polyols, process for preparing polyether polyols and their use for producing polyurethanes // Patent US № 2011/0269863. 2011.
  88. Hager S.L., Moore M.N., Reese J.R., Neal B.L. Polyols suitable for hot molded foam production with high renewable resource content // Patent US № 2013/0210951. 2013.
  89. Huang Y.-J., Qi G.-R., Wang Y.-H. Controlled ring-opening polymerization of propylene oxide catalyzed by double metal-cyanide complex // J. Polym. Sci., Part A: Polym. Chem. 2002. V. 40. № 8. P. 1142-1150. https://doi.org/10.1002/pola.10183
  90. Gao Y., Gu L., Qin Y., Wang X., Wang F. Dicarboxylic acid promoted immortal copolymerization for controllable synthesis of low-molecular weight oligo(carbonateether) diols with tunable carbonate unit content // J. Polym. Sci., Part A: Polym. Chem. 2012. V. 50. № 24. P. 5177-5184. https://doi.org/10.1002/pola.26366
  91. Liu S., Qin Y., Qiao L., Miao Y., Wang X., Wang F. Cheap and fast: oxalic acid initiated CO2-based polyols synthesized by a novel preactivation approach // Polym. Chem. 2016. V. 7. № 1. P. 146-152. https://doi.org/10.1039/C5PY01338K
  92. Liu S., Miao Y., Qiao L., Qin Y., Wang X., Chen X., Wang F. Controllable synthesis of a narrow polydispersity CO2-based oligo(carbonate-ether) tetraol // Polym. Chem. 2015. V. 6. № 43. P. 7580-7585. https://doi.org/10.1039/C5PY00556F
  93. Liu S., Qin Y., Chen X., Wang X., Wang F. One-pot controllable synthesis of oligo(carbonate-ether) triol using a Zn-Co-DMC catalyst: the special role of trimesic acid as an initiation-transfer agent // Polym. Chem. 2014. V. 5. № 21. P. 6171-6179. https://doi.org/10.1039/C4PY00578C
  94. Li X.-J., Wen Y.-F., Wang Y., Peng H.-Y., Zhou X.-P., Xie X.-L. CO2-based biodegradable supramolecular polymers with well-tunable adhesive properties // Chin. J. Polym. Sci. 2022. V. 40. № 1. P. 47-55. https://doi.org/10.1007/s10118-021-2641-9
  95. Haider K.W., Chung J.Y.J., Dormish J.F., Starcher R.V., Yano I.L., Hortelano E.R. Polyether-polysiloxane polyols // Patent US № 2008/0171829. 2008.
  96. Yi M.J., Byun S.-H., Ha C.-S., Park D.-W., Kim I. Copolymerization of cyclohexene oxide with carbon dioxide over nano-sized multi-metal cyanide catalysts // Solid State Ion. 2004. V. 172. № 1. P. 139-144. https://doi.org/10.1016/j.ssi.2004.04.031
  97. Friščić T., Mottillo C., Titi H.M. Mechanochemistry for Synthesis // Angew. Chem. Int. Ed. 2020. V. 59. № 3. P. 1018-1029. https://doi.org/10.1002/anie.201906755
  98. Guo Z., Lin Q. Coupling reaction of CO2 and propylene oxide catalyzed by DMC with co-complexing agents incorporated via ball milling // J. Mol. Catal. A: Chem. 2014. V. 390. P. 63-68. https://doi.org/10.1016/j.molcata.2014.03.006
  99. Guo Z., Lin Q., Wang X., Yu C., Zhao J., Shao Y., Peng T. Rapid synthesis of nanoscale double metal cyanide catalysts by ball milling for the cycloaddition of CO2 and propylene oxide // Mater. Lett. 2014. V. 124. P. 184-187. https://doi.org/10.1016/j.matlet.2014.03.076
  100. Guo Z., Lin Q., Zhu L., Wang X., Niu Y., Yu C., Fang T. Nanolamellar Zn-Ni/Co-Ni catalysts introduced by ball milling for the copolymerization of CO2 with propylene oxide // Nanosci. Nanotechnol. Lett. 2014. V. 6. № 4. P. 353-356. https://doi.org/10.1166/nnl.2014.1757
  101. Zhang W., Lu L., Cheng Y., Xu N., Pan L., Lin Q., Wang Y. Clean and rapid synthesis of double metal cyanide complexes using mechanochemistry // Green Chem. 2011. V. 13. № 10. P. 2701-2703. https://doi.org/10.1039/C1GC15557A
  102. Qiang L., Zhifang G., Lisha P., Xue X. Zn-Cr double metal cyanide catalysts synthesized by ball milling for the copolymerization of CO2/propylene oxide, phthalic anhydride/propylene oxide, and CO2/propylene oxide/phthalic anhydride // Catal. Commun. 2015. V. 64. P. 114-118. https://doi.org/10.1016/j.catcom.2015.02.015
  103. Shi J., Shi Z., Yan H., Wang X., Zhang X., Lin Q., Zhu L. Synthesis of Zn-Fe double metal cyanide complexes with imidazolium-based ionic liquid cocatalysts via ball milling for copolymerization of CO2 and propylene oxide // RSC Adv. 2018. V. 8. № 12. P. 6565-6571. https://doi.org/10.1039/C7RA12528C
  104. Liu N., Gu C., Wang Q., Zhu L., Yan H., Lin Q. Fabrication and characterization of the ternary composite catalyst system of ZnGA/RET/DMC for the terpolymerization of CO2, propylene oxide and trimellitic anhydride // RSC Adv. 2021. V. 11. № 15, P. 8782-8792. https://doi.org/10.1039/D0RA09630J
  105. Kim I., Anas K., Lee S., Ha, C.-S., Park, D.-W. Tuning of the activity and induction period of double metal cyanide catalyzed ring-opening polymerizations of propylene oxide by using ionic liquids // Catal. Today. 2008. V. 131. № 1. P. 541-547. https://doi.org/10.1016/j.cattod.2007.10.067
  106. Tharun J., Dharman M.M., Hwang Y., Roshan R., Park M.S., Park D.-W. Tuning double metal cyanide catalysts with complexing agents for the selective production of cyclic carbonates over polycarbonates // Appl. Catal. A: Gen. 2012. V. 419-420. P. 178-184. https://doi.org/10.1016/j.apcata.2012.01.024
  107. Wei R.-j., Zhang X.-h., Du B.-y., Fan Z.-q., Qi G.-r. Synthesis of bis(cyclic carbonate) and propylene carbonate via a one-pot coupling reaction of CO2, bisepoxide and propylene oxide // RSC Adv. 2013. V. 3. № 38. P. 17307-17313. https://doi.org/10.1039/C3RA42570C
  108. Dharman M.M., Yu J.-I., Ahn J.-Y., Park D.-W. Selective production of cyclic carbonate over polycarbonate using a double metal cyanide-quaternary ammonium salt catalyst system // Green Chem. 2009. V. 11. № 11. P. 1754-1757. https://doi.org/10.1039/B916875N
  109. Zhang Y.-Y., Li Y., Zhou X.-J., Zhang X.-H., Du B.-Y., Fan Z.-Q. Synthesis of an amphiphilic brush copolymer by a highly efficient "grafting onto" approach via CO2 chemistry // Macromol. Rapid Commun. 2015. V. 36. № 9. P. 852-857. https://doi.org/10.1002/marc.201400718
  110. Liu B., Zhang Y.-Y., Zhang X.-H., Du B.-Y., Fan Z.-Q. Fixation of carbon dioxide concurrently or in tandem with free radical polymerization for highly transparent polyacrylates with specific UV absorption // Polym. Chem. 2016. V. 7. № 22. P. 3731-3739. https://doi.org/10.1039/C6PY00525J
  111. Garcia J.L., Jang E.J., Alper H. New heterogeneous catalysis for the synthesis of poly(ether polyol)s // J. Appl. Polym. Sci. 2002. V. 86. № 7. P. 1553-1557. https://doi.org/10.1002/aP.10996
  112. Robertson N.J., Qin Z., Dallinger G.C., Lobkovsky E.B., Lee S., Coates, G.W. Two-dimensional double metal cyanide complexes: highly active catalysts for the homopolymerization of propylene oxide and copolymerization of propylene oxide and carbon dioxide // Dalton Trans. 2006. № 45. P. 5390-5395. https://doi.org/10.1039/B607963F
  113. Hofmann J. Double metal cyanide catalysts for the preparation of polyether polyols // Patent US № 2008/0177025. 2008.
  114. Yu S.J., Liu Y., Byeon S.J., Park D.W., Kim I. Ring-opening polymerization of propylene oxide by double metal cyanide catalysts prepared by reacting CoCl2 with various metal cyanide salts // Catal. Today. 2014. V. 232. P. 75-81. https://doi.org/10.1016/j.cattod.2013.09.038
  115. Alferov K., Wang S., Li T., Xiao M., Guan S., Meng Y. Co-Ni cyanide bi-metal catalysts: copolymerization of carbon dioxide with propylene oxide and chain transfer agents // Catalysts. 2019. V. 9. № 8. P. 632. https://doi.org/10.3390/catal9080632
  116. Chen S., Xiao Z., Ma M. Copolymerization of carbon dioxide and epoxides with a novel effective Zn-Ni double-metal cyanide complex // J. Appl. Polym. Sci. 2008. V. 107. № 6. P. 3871-3877. https://doi.org/10.1002/app.25064
  117. Lawniczak-Jablonska K., Dynowska E., Lisowski W., Sobczak J.W., Chruściel A., Hreczuch W., Libera J., Reszka A. Structural properties and chemical bonds in double metal cyanide catalysts // X-ray Spectrom. 2015. V. 44. № 5. P. 330-338. https://doi.org/10.1002/xrs.2636
  118. Mullica D.F., Milligan W.O., Beall G.W., Reeves W.L. Crystal structure of Zn3[Co(CN)6]2·12H2O // Acta Crystallogr. B. 1978. V. 34. № 12. P. 3558-3561. https://doi.org/10.1107/S0567740878011589
  119. Simonov A., De Baerdemaeker T., Boström H.L.B., Ríos Gómez M.L., Gray H.J., Chernyshov D., Bosak A., Bürgi H.-B., Goodwin A.L. Hidden diversity of vacancy networks in Prussian blue analogues // Nature. 2020. V. 578. № 7794. P. 256-260. https://doi.org/10.1038/s41586-020-1980-y
  120. Zhang X.-H., Hua Z.-J., Chen S., Liu, F., Sun X.-K., Qi G.-R. Role of zinc chloride and complexing agents in highly active double metal cyanide catalysts for ring-opening polymerization of propylene oxide // Appl. Catal. A: Gen. 2007. V. 325. № 1. P. 91-98. https://doi.org/10.1016/j.apcata.2007.03.014
  121. Chen S., Zhang P., Chen L. Fe/Zn double metal cyanide (DMC) catalyzed ring-opening polymerization of propylene oxide: Part 3. Synthesis of DMC catalysts // Prog. Org. Coat. 2004. V. 50. № 4. P. 269-272. https://doi.org/10.1016/j.porgcoat.2004.03.003
  122. Lawniczak-Jablonska K., Chrusciel A. Estimation of the catalytic centre in double metal cyanide catalysts by XAS // J. Phys. Conf. Ser. 2016. V. 712. № 1. P. 012062. https://doi.org/10.1088/1742-6596/712/1/012062
  123. Chruściel A., Hreczuch W., Czaja K., Ławniczak-Jabłońska K., Janik J. The complementary structural studies of the double metal cyanide type catalysts for the ring opening polymerization of the oxiranes // Polimery. 2016. V. 61. № 6. P. 421-432. https://doi.org/10.14314/polimery.2016.421
  124. Sreeprasanth P.S., Srivastava R., Srinivas D., Ratnasamy P. Hydrophobic, solid acid catalysts for production of biofuels and lubricants // Appl. Catal. A: Gen. 2006. V. 314. № 2. P. 148-159. https://doi.org/10.1016/j.apcata.2006.08.012
  125. Marquez C., Simonov A., Wharmby M.T., Van Goethem C., Vankelecom I., Bueken B., Krajnc A., Mali G., De Vos, D., De Baerdemaeker T. Layered Zn2[Co(CN)6](CH3COO) double metal cyanide: a two-dimensional DMC phase with excellent catalytic performance // Chem. Sci. 2019. V. 10. № 18. P. 4868-4875. https://doi.org/10.1039/C9SC00527G
  126. Sebastian J., Darbha S. Structure-induced catalytic activity of Co-Zn double-metal cyanide complexes for terpolymerization of propylene oxide, cyclohexene oxide and CO2 // RSC Adv. 2015. V. 5. № 24. P. 18196-18203. https://doi.org/10.1039/C5RA00299K
  127. Sebastian J., Srinivas D. Factors influencing catalytic activity of Co-Zn double-metal cyanide complexes for alternating polymerization of epoxides and CO2 // Appl. Catal. A: Gen. 2015. V. 506. P. 163-172. https://doi.org/10.1016/j.apcata.2015.09.010
  128. Wojdeł J.C., Bromley S.T., Illas F., Jansen J.C. Development of realistic models for double metal cyanide catalyst active sites // J. Mol. Model. 2007. V. 13. № 6. P. 751-756. https://doi.org/10.1007/s00894-007-0218-3
  129. Almora-Barrios N., Pogodin S., Bellarosa L., García-Melchor M., Revilla-López G., García-Ratés, M., Vázquez-García A.B., Hernández-Ariznavarreta P., López N. Structure, activity, and deactivation mechanisms in double metal cyanide catalysts for the production of polyols // ChemCatChem. 2015. V. 7. № 6. P. 928-935. https://doi.org/10.1002/cctc.201402907
  130. Chruściel A., Hreczuch W., Czaja K., Sacher-Majewska B. On thermal behaviour of DMC catalysts for ring opening polymerization of epoxides // Thermochim. Acta. 2016. V. 630. P. 78-89. https://doi.org/10.1016/j.tca.2016.02.009
  131. Barnard J.A. The pyrolysis of tert-butanol // Trans. Faraday Soc. 1959. V. 55. P. 947-951. https://doi.org/10.1039/TF9595500947
  132. Kisielowski C., Specht P., Rozeveld S., Freitag B., Kieft E.R., Kang J., Fielitz A.J., Fielitz T.R., van Dyck D., Yancey D.F. Exploring functional materials by understanding beam-sample interactions // Adv. Funct. Mater. 2022. V. 32. № 27. P. 2201112. https://doi.org/10.1002/adfm.202201112
  133. Hayes J.E., Langsdorf L.J., Isaacs B.H., Armellini F.J. Process for rapid activation of double metal cyanide catalysts // Patent US № 5844070. 1998.
  134. Schenk S., Notni J., Köhn U., Wermann K., Anders E. Carbon dioxide and related heterocumulenes at zinc and lithium cations: bioinspired reactions and principles // Dalton Trans. 2006. № 35. P. 4191-4206. https://doi.org/10.1039/B608534B
  135. Li Y., Zhang Y.-Y., Liu B., Zhang X.-H. HCAII-inspired catalysts for making carbon dioxide-based copolymers: the role of metal-hydroxide bond // Chin. J. Polym. Sci. 2018. V. 36. № 2. P. 139-148. https://doi.org/10.1007/s10118-018-2047-5
  136. Kuyper J., Boxhoorn G. Hexacyanometallate salts used as alkene-oxide polymerization catalysts and molecular sieves // J. Catal. 1987. V. 105. № 1. P. 163-174. https://doi.org/10.1016/0021-9517(87)90016-9
  137. Chen S., Xu N., Shi J. Structure and properties of polyether polyols catalyzed by Fe/Zn double metal cyanide complex catalyst // Prog. Org. Coat. 2004. V. 49. № 2. P. 125-129. https://doi.org/10.1016/j.porgcoat.2003.08.021
  138. Chen S., Chen L. Sequence structure of polyether catalyzed by Fe-Zn double-metal cyanide complex catalysts // Colloid. Polym. Sci. 2003. V. 281. № 3. P. 288-291. https://doi.org/10.1007/s00396-002-0792-y
  139. Luinstra G.A., Molnar F. Poly(propylene carbonate), old CO2 copolymer with new attractiveness // Macromol. Symp. 2007. V. 259. № 1. P. 203-209. https://doi.org/10.1002/masy.200751324
  140. Klaus S., Lehenmeier M.W., Herdtweck E., Deglmann P., Ott A.K., Rieger B. Mechanistic insights into heterogeneous zinc dicarboxylates and theoretical considerations for CO2-epoxide copolymerization // J. Am. Chem. Soc. 2011. V. 133. № 33. P. 13151-13161. https://doi.org/10.1021/ja204481w
  141. Stahl S.-F., Luinstra G.A. DMC-Mediated copolymerization of CO2 and PO - mechanistic aspects derived from feed and polymer composition // Catalysts. 2020. V. 10. № 9. P. 1066. https://doi.org/10.3390/catal10091066
  142. Darensbourg D.J., Adams M.J., Yarbrough J.C. Toward the design of double metal cyanides for the copolymerization of CO2 and epoxides // Inorg. Chem. 2001. V. 40. № 26. P. 6543-6544. https://doi.org/10.1021/ic0155941
  143. Darensbourg D.J., Adams M.J., Yarbrough J.C., Phelps A.L. Synthesis and structural characterization of double metal cyanides of iron and zinc: catalyst precursors for the copolymerization of carbon dioxide and epoxides // Inorg. Chem. 2003. V. 42. № 24. P. 7809-7818. https://doi.org/10.1021/ic0347900
  144. Darensbourg D.J., Phelps A.L. Mixed metal cyanide complexes derived from the CpCo(CN)3- anion // Inorg. Chim. Acta. 2004. V. 357. № 5. P. 1603-1607. https://doi.org/10.1016/j.ica.2003.11.016
  145. Kubisa P., Penczek S. Cationic activated monomer polymerization of heterocyclic monomers // Prog. Polym. Sci. 1999. V. 24. № 10. P. 1409-1437. https://doi.org/10.1016/S0079-6700(99)00028-3
  146. Raghuraman A., Babb D., Miller M., Paradkar M., Smith B., Nguyen A. Sequential DMC/FAB-catalyzed alkoxylation toward high primary hydroxyl, high molecular weight polyether polyols // Macromolecules. 2016. V. 49. № 18. P. 6790-6798. https://doi.org/10.1021/acs.macromol.6b01363
  147. Inoue S. Immortal polymerization: the outset, development, and application // J. Polym. Sci., Part A: Polym. Chem. 2000. V. 38. № 16. P. 2861-2871. https://doi.org/10.1002/1099-0518(20000815)38:16<2861::AIDPOLA20>3.0.CO;2-1
  148. Zhang M., Villa C., Thompson L., Weston J. Multisite model of polyol preparation in continuous processes using heterogeneous double metal cyanide catalysts. https://folk.ntnu.no/skoge/prost/proceedings/aiche-2004/pdffiles/papers/353b.pdf.
  149. Grajciar L., Heard C.J., Bondarenko A.A., Polynski M.V., Meeprasert J., Pidko E.A., Nachtigall P. Towards operando computational modeling in heterogeneous catalysis // Chem. Soc. Rev. 2018. V. 47. № 22. P. 8307-8348. https://doi.org/10.1039/C8CS00398J
  150. Natta G., Mantica E. The distribution of products in a series of consecutive competitive reactions // J. Am. Chem. Soc. 1952. V. 74. № 12. P. 3152-3156. https://doi.org/10.1021/ja01132a057
  151. Stahl S.-F., Wietzer M., Luinstra G.A. DMC-mediated propoxylation in semibatch with an external loop: insights into the catalytic action // Ind. Eng. Chem. Res. 2023. V. 62. № 29. P. 11536-11548. https://doi.org/10.1021/acs.iecr.3c01313
  152. Lee S., Baek S.T., Anas K., Ha C.-S., Park D.-W., Lee J.W., Kim I. Tuning of activity, induction period and polymer properties of double metal cyanide catalyzed ring-opening polymerizations of propylene oxide by using quaternary ammonium salts // Polymer. 2007. V. 48. № 15. P. 4361-4367. https://doi.org/10.1016/j.polymer.2007.05.072
  153. Lee S.H., Ha C.-S., Kim I. Modified montmorillonite as a tuner of propylene oxide polymerization behavior catalyzed by double metal cyanide compound // Macromol. Res. 2007. V. 15. № 3. P. 202-204. https://doi.org/10.1007/BF03218775
  154. Le-Khac B., Wang W., Faraj M.K. Acid-treated double metal cyanide complex catalysts // Patent US № 6063897. 2000.
  155. Safina L.R., Kharlampidi K.E., Safin D.K. Molecular-weight characteristics and deemulsifying activity of oligourethanes based on alkylene oxide block copolymers and propylene oxide homopolymers prepared in the presence of a double metal cyanide catalyst // Russ. J. Appl. Chem. 2012. V. 85. № 10. P. 1610-1616. https://doi.org/10.1134/S1070427212100230
  156. Dai C., Zhu Q., Pang H., Zhu L., Lin Q. Rapid copolymerization of carbon dioxide and propylene oxide catalyzed by double metal cyanide complexes in an ultrasonic field // Mater. Lett. 2016. V. 180. P. 89-92. https://doi.org/10.1016/j.matlet.2016.05.119
  157. Lear J.J., Sloan O.D., Pazos J.F. Method for decreasing the propensity for phase-out of the high molecular weight component of double metal cyanide-catalyzed high secondary hydroxyl polyoxypropylene polyols // Patent US № 6083420. 2000.
  158. Laitar D.S., Babb D.A., Villa C.M., Keaton R., Masy J.-P. Alkylene oxide polymerization using a double metal cyanide catalyst complex and a magnesium, Group 3-Group 15 metal or lanthanide series metal compound // Patent US № 9040657. 2015.
  159. McDaniel K.G., Combs G.G. Catalyst for the production of polyols having lower amounts of high molecular weight tail // Patent US № 9562134. 2017.
  160. Eleveld M.B., Grotenbreg R.A.W., Van Kempen R. Preparation of a double metal cyanide catalyst // Patent US № 6977236. 2005.
  161. Song Z., Subramaniam B., Chaudhari R.V. Transesterification of propylene carbonate with methanol using Fe-Mn double metal cyanide catalyst // ACS Sustain. Chem. Eng. 2019. V. 7. № 6. P. 5698-5710. https://doi.org/10.1021/acssuschemeng.8b04779
  162. Hamuyuni J., Daramola M.O., Oluwasina O.O. Energy-Dispersive X-ray Spectroscopy: Theory and Application in Engineering and Science in Encyclopedia of Physical Organic Chemistry / Eds. Wang. Z. John Wiley & Sons, 2017. P. 1-23.
  163. Jadhav A.R., Bandal H.A., Kim H. Synthesis of substituted amines: catalytic reductive amination of carbonyl compounds using Lewis acid Zn-Co-double metal cyanide/polymethylhydrosiloxane // Chem. Eng. J. 2016. V. 295. P. 376-383. https://doi.org/10.1016/j.cej.2016.02.067
  164. Kotwal M., Deshpande S.S., Srinivas D. Esterification of fatty acids with glycerol over Fe-Zn doublemetal cyanide catalyst // Catal. Commun. 2011. V. 12. № 14. P. 1302-1306. https://doi.org/10.1016/j.catcom.2011.05.008
  165. Kumar P., Matoh L., Srivastava V.C., Štangar U.L. Synthesis of zinc/ferrocyanide nano-composite catalysts having a high activity for transesterification reaction // Renew. Energy. 2020. V. 148. P. 946-952. https://doi.org/10.1016/j.renene.2019.10.178
  166. Kumar P., Srivastava V.C., Jha M.K. Synthesis of biodiesel from transesterification of Jatropha oil with methanol using double metal cyanide as catalyst // J. Clean Energy Technol. 2017. V. 5. № 1. P. 23-26. https://doi.org/10.18178/jocet.2017.5.1.337
  167. Sebastian J., Darbha S. Solid, double-metal cyanide catalysts for synthesis of hyperbranched polyesters and aliphatic polycarbonates // J. Chem. Sci. 2014. V. 126. № 2. P. 499-509. https://doi.org/10.1007/s12039-014-0573-4
  168. Sebastian J., Srinivas D. Influence of method of preparation of solid, double-metal cyanide complexes on their catalytic activity for synthesis of hyperbranched polymers // Appl. Catal. A: Gen. 2013. V. 464-465. P. 51-60. https://doi.org/10.1016/j.apcata.2013.05.024
  169. Srinivas D., Satyarthi J.K. Biodiesel production from vegetable oils and animal fat over solid acid double-metal cyanide catalysts // Catal. Surv. from Asia. 2011. V. 15. № 3. P. 145-160. https://doi.org/10.1007/s10563-010-9108-2
  170. Srivastava R., Srinivas D., Ratnasamy P. Fe-Zn double-metal cyanide complexes as novel, solid transesterification catalysts // J. Catal. 2006. V. 241. № 1. P. 34-44. https://doi.org/10.1016/j.jcat.2006.04.002
  171. Marquez C., Corbet M., Smolders S., Marion P., De Vos D. Double metal cyanides as heterogeneous Lewis acid catalysts for nitrile synthesis via acid-nitrile exchange reactions // Chem. Commun. 2019. V. 55. № 86. P. 12984-12987. https://doi.org/10.1039/C9CC05382D
  172. Satyarthi J.K., Radhakrishnan S., Srinivas D. Factors influencing the kinetics of esterification of fatty acids over solid acid catalysts // Energy & Fuels. 2011. V. 25. № 9. P. 4106-4112. https://doi.org/10.1021/ef2009138
  173. Satyarthi J.K., Srinivas D., Ratnasamy P. Influence of surface hydrophobicity on the esterification of fatty acids over solid catalysts // Energy & Fuels. 2010. V. 24. № 3. P. 2154-2161. https://doi.org/10.1021/ef1001452
  174. Satyarthi J.K., Srinivas D., Ratnasamy P. Hydrolysis of vegetable oils and fats to fatty acids over solid acid catalysts // Appl. Catal. A: Gen. 2011. V. 391. № 1. P. 427-435. https://doi.org/10.1016/j.apcata.2010.03.047
  175. De Gisi S., Lofrano G., Grassi M., Notarnicola M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review // Sustain. Mater. Technol. 2016. V. 9. P. 10-40. https://doi.org/10.1016/j.susmat.2016.06.002
  176. Luo M., Zhang X.-H., Du B.-Y., Wang Q., Fan Z.-Q. Alternating copolymerization of carbonyl sulfide and cyclohexene oxide catalyzed by zinc-cobalt double metal cyanide complex // Polymer. 2014. V. 55. № 16. P. 3688-3695. https://doi.org/10.1016/j.polymer.2014.05.065
  177. Wei R.-J., Zhang X.-H., Du B.-Y., Sun X.-K., Fan Z.-Q., Qi G.-R. Highly Regioselective and alternating copolymerization of racemic styrene oxide and carbon dioxide via heterogeneous double metal cyanide complex catalyst // Macromolecules. 2013. V. 46. № 9. P. 3693-3697. https://doi.org/10.1021/ma4004709
  178. Yan F., Yuan Z., Lu P., Luo W., Yang L., Deng L. Fe-Zn double-metal cyanide complexes catalyzed biodiesel production from high-acid-value oil // Renew. Energy. 2011. V. 36. № 7. P. 2026-2031. https://doi.org/10.1016/j.renene.2010.10.032
  179. Cao X., Wang K., Mao Q., Gu Z., Wang F. MCM-41-supported double metal cyanide nanocomposite catalyst for ring-opening polymerisation of propylene oxide // J. Nanopart. Res. 2022. V. 24. № 3. P. 71-71. https://doi.org/10.1007/s11051-022-05443-1
  180. Dienes Y., Leitner W., Müller M.G.J., Offermans W.K., Reier T., Reinholdt A., Weirich T.E., Müller T.E. Hybrid sol-gel double metal cyanide catalysts for the copolymerisation of styrene oxide and CO2 // Green Chem. 2012. V. 14. № 4. P. 1168-1177. https://doi.org/10.1039/C2GC16485J
  181. Marquez C., Rivera-Torrente M., Paalanen P.P., Weckhuysen B.M., Cirujano F.G., De Vos D., De Baerdemaeker T. Increasing the availability of active sites in Zn-Co double metal cyanides by dispersion onto a SiO2 support // J. Catal. 2017. V. 354. P. 92-99. https://doi.org/10.1016/j.jcat.2017.08.008
  182. Sun X.-K., Zhang X.-H., Liu F., Chen S., Du B.-Y., Wang Q., Fan Z.-Q., Qi G.-R. Alternating copolymerization of carbon dioxide and cyclohexene oxide catalyzed by silicon dioxide/Zn-CoIII double metal cyanide complex hybrid catalysts with a nanolamellar structure // J. Polym. Sci., Part A: Polym. Chem. 2008. V. 46. № 9. P. 3128-3139. https://doi.org/10.1002/pola.22666
  183. Zhu L., Zhu Q., Wang Q., Gu C., Tang A., Liu T., Dai C., Li H. CO2 copolymerization catalyzed by the double metal cyanide catalysts Zn-Fe(III)/Zn-Co(III) with nanometer-sized γ-Al2O3 as co-catalyst // Nanosci. Nanotechnol. Lett. 2018. V. 10. № 11. P. 1515-1522. https://doi.org/10.1166/nnl.2018.2822
  184. Le-Khac B. Polyurethane foam-supported double metal cyanide catalysts for polyol synthesis // Patent US № 5426081. 1995.
  185. Le-Khac B. Plastic foam-supported double metal cyanide catalysts for polyether polyol synthesis // Patent US № 5523386. 1996.
  186. Le-Khac B. Polyurethane foam-supported double metal cyanide catalysts for polyether polyol synthesis // Patent US № 5527880. 1996.
  187. Zhang X.-H., Wei R.-J., Sun X.-K., Zhang J.-F., Du B.-Y., Fan Z.-Q., Qi G.-R. Selective copolymerization of carbon dioxide with propylene oxide catalyzed by a nanolamellar double metal cyanide complex catalyst at low polymerization temperatures // Polymer. 2011. V. 52. № 24. P. 5494-5502. https://doi.org/10.1016/j.polymer.2011.09.040

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##