Influence of Synthesis Conditions on the Performance of Palladium–Copper Ethanol-to-Butanol Conversion Catalysts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of the synthesis conditions on the performance of Pd–Cu ethanol-to-butanol conversion catalysts was studied. The optimum conditions for forming the most active system 0.2%Cu/0.3%Pd/Al2O3 are as follows: sample synthesis by Al2O3 impregnation from aqueous solutions of Pd and Cu nitrates; deposition of the metal precursors in succession; total content of Pd and Cu in the sample 0.5 wt %; Pd : Сu molar ratio 1 : 1; catalyst reduction temperature 200○С. As shown by TEM, XPS, TPD-NH3, TPR-H2, XRD, and N2 adsorption, the surface of the most active catalyst contains Pd0Cu0 particles with the mean size of 4 ± 2 nm. The bimetallic particles are an alloy with the fcc structure and Pd : Cu ratio of 40 : 60. At 275○C, the performance of 0.2%Cu/0.3%Pd/Al2O3 is 182 × 10–4 mol h–1 g–1. The value obtained is higher by several orders of magnitude than the performance of the reference catalysts M1/Al2O3 (M1 = Fe, Ni, Co) and by an order of magnitude than that of the reference catalysts M2/Al2O3 (M2 = Ru, Rh, Pt, Pd, Pt–Re, Ni–Mo).

About the authors

S. A. Nikolaev

Department of Chemistry, Moscow State University

Email: serge2000@rambler.ru
119991, Moscow, Russia

D. I. Ezzhelenko

Department of Chemistry, Moscow State University

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

A. V. Chistyakov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

P. A. Chistyakova

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

M. V. Tsodikov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Author for correspondence.
Email: petrochem@ips.ac.ru
119991, Moscow, Russia

References

  1. Ушаков Н.В. Селективное гидрирование дициклопентадиена // Журн. прикл. химии. 2020. Т. 93. С. 155-163. https://doi.org/10.31857/S0044461820020012
  2. Ushakov N.V. Selective hydrogenation of dicyclopentadiene // Russ. J. Appl. Chem. 2020. V. 93. P. 159-166. https://doi.org/10.1134/s1070427220020019.
  3. Флид В.Р., Грингольц М.Л., Шамсиев Р.С., Финкельштейн Е.Ш. Норборнен, норборнадиен и их производные - перспективные полупродукты для органического синтеза и получения полимерных материалов // Усп. хим. 2018. Т. 87. С. 1169-1205. https://doi.org/10.1070/RCR4834
  4. Flid V.R., Gringolts M.L., Shamsiev R.S., Finkelshtein E.Sh. Norbornene, norbornadiene and their derivatives: promising semi-products for organic synthesis and production of polymeric materials // Russ. Chem. Rev. 2018. V. 87. P. 1169-1205. https://doi.org/10.1070/RCR4834.
  5. Jamróz M.E., Gałka S., Dobrowolski J.C. On dicyclopentadiene isomers // J. Mol. Struct. (Theochem). 2003. V. 634. P. 225-233. https://doi.org/10.1016/S0166-1280(03)00348-8
  6. Keenan M.J. (Eds.). Kirk-Othmer Encyclopedia of chemical technology. Wiley & Sons. Inc. Hoboken: New York, 1993. V. 7. P. 859-876.
  7. Flammersheim H.J., Opfermann J. The dimerization of cyclopentadiene - a test reaction for the kinetic analysis of DSC measurements and the performance of a kinetic evaluation program // Thermochim. Acta. 1999. V. 337. P. 149-153. https://doi.org/10.1016/S0040-6031(99)00163-X
  8. Woodward R.B., Hoffmann R. The conversion of orbital symmetry // Angew. Chem. Int. Ed. 1969. V. 8. P. 781-853. https://doi.org/10.1002/anie.196907811
  9. Hammond G.S., Turro N.J., Liu R.S.H. Mechanisms of photochemical reactions in solution XVI. Photosensitized dimerization of conjugated dienes // J. Org. Chem. 1963. V. 28. P. 3297-3303. https://doi.org/10.1021/Jo01047A005
  10. Turro N.J., Hammond G.S. The photosensitited dimerization of cyclopentadiene // J. Am. Chem. Soc. 1962. V. 84. P. 2841-2842. https://doi.org/10.1021/Ja00873A050
  11. Kovačič S., Slugovc C. Ring-opening metathesis polymerisation derived poly (dicyclopentadiene) based materials // Mater. Chem. Front. 2020. V. 4. № 8. Р. 2235-2255. https://doi.org/10.1039/D0QM00296H
  12. Leguizamon S.C., Cook A.W., Appelhans L.N. Employing Photosensitizers for rapid olefin metathesis additive manufacturing of poly(dicyclopentadiene) // Chem. Mater. 2021. V. 33. № 24. P. 9677-9689. https://doi.org/10.1021/acs.chemmater.1c03298
  13. Mann M., Zhang B., Tonkin S.J., Gibson C.Т., Jia Z., Hasell T., Chalker J.M. Processes for coating surfaces with a copolymer made from sulfur and dicyclopentadiene // Polym. Chem. 2022. V. 13. P. 1320-1327. https://doi.org/10.33774/chemrxiv-2021-n91h4
  14. Keenan M.J. (Eds.). Kirk-Othmer Encyclopedia of chemical technology. Wiley & Sons. Inc. Hoboken: New York, 2001. V. 24. P. 540.
  15. Worzakowska M. Novel DCPD-modified polyester containing epoxy groups: thermal, viscoelastic, and mechanical properties of their wood flour filled copolymers // Polym. Bull. 2012. V. 68. P. 775-787. https://doi.org/10.1007/s00289-011-0585-x
  16. Khan A., Ali S.S., Chodimella V.P., Farooqui S.A., Anand M., Sinha A.K. Catalytic conversion of dicyclopentadiene into high energy density fuel: a brief review // Ind. Eng. Chem. Res. 2021. V. 60. P. 1977-1988. https://doi.org/10.1021/acs.iecr.0c06168
  17. Zhang Z., Liu R., Li W., Liu Y., Pei Z., Qiu J., Wang S. Frontal polymerization-assisted 3D printing of short carbon fibers/dicyclopentadiene composites // J. Manuf. Process. 2021. V. 71. P. 753-762. https://doi.org/10.1016/j.jmapro.2021.10.014
  18. Behr A., Manz V., Lux A., Ernst A. Highly Selective Mono-hydrogenation of dicyclopentadiene with Pd-nanoparticles // Catal. Lett. 2013. V. 143. № 3. P. 241-245. https://doi.org/10.1007/s10562-013-0960-3
  19. Skála D., Hanika J. Dicyclopentadiene hydrogenation in trickle-bed reactor under forced periodic control // Chem. Papers. 2008. V. 62. № 2. P. 215-218. https://doi.org/10.2478/s11696-008-0013-3
  20. Hao M., Yang B., Wang H., Liu G., Qi S. Kinetics of liquid phase catalytic hydrogenation of dicyclopentadiene over Pd/C catalyst // J. Phys. Chem. A. 2010. V. 114. № 11. P. 3811-3817. https://doi.org/10.1021/jp9060363
  21. Верещагина Н.В., Антонова Т.Н., Копушкина Г.Ю., Абрамов И.Г. Кинетика насыщения и относительная реакционная способность двойных связей алициклических диенов в процессе гидрирования // Кинетика и катализ. 2017. Т. 58. № 3. С. 266-273. https://doi.org/10.7868/S0453881117030133
  22. Vereshchagina N.V., Antonova T.N., Kopushkina G.Yu., Abramov I.G. // Kin. Cat. 2017. V. 58. P. 255-261. https://doi.org/10.1134/S0023158417030120.
  23. Бермешев М.В., Антонова Т.Н., Шангареев Д.Р., Данилова А.С., Пожарская Н.А. Селективное каталитическое гидрирование алициклических диенов водородом в жидкой фазе // Нефтехимия. 2018. V. 58. C. 580-587
  24. Bermeshev M.V., Antonova T.N., Shangareev D.R., Danilova A.S., Pozharskaya N.A. // Petrol. Chemistry. 2018. V. 58. P. 869-875. https://doi.org/10.1134/S0028242118050039.
  25. Chung S.H., Park G.H., Schukkink N., Lee H., Shiju N.R. Structure-sensitive epoxidation of dicyclopentadiene over TiO2 catalysts // Chem. Commun. 2023. V. 59. P. 756-759. https://doi.org/10.1039/D2CC05305E
  26. Антонова Т.Н., Абрамов И.А., Фельдблюм В.Ш., Абрамов И.Г., Данилова А.С. Каталитическое гидрирование дициклопентадиена в дициклопентен в жидкой фазе // Нефтехимия. 2009. Т. 49. № 5. С. 386-388
  27. Antonova T.N., Abramov I.A., Feldblyum V.Sh., Abramov I.G., Danilova A.S. // Petrol. Chemistry. 2009. V. 49. № 5. P. 366-368. https://doi.org/10.1134/S0965544109050041.
  28. Liu G., Mi Z., Wang Li, Zhang X. Kinetics of dicyclopentadiene hydrogenation over Pd/Al2O3 catalyst // Ind. Eng. Chem. Res. 2005. V. 44. P. 3846-3851. https://doi.org/10.1021/ie0487437
  29. Zou J.-J., Zhang X., Kong J., Wang L., Zou J.-J., Zhang X., Kong J., Wang L. Hydrogenation of dicyclopentadiene over amorphous nickel alloy catalyst SRNA-4 // Fuel. 2008. V. 87. P. 3655-3659. https://doi.org/10.1016/j.fuel.2008.07.006
  30. Замалютин В.В., Рябов А.В., Ничуговский А.И., Скрябина А.Ю., Ткаченко О.Ю., Флид В.Р. Особенности гетерогенно-каталитического гидрирования 5-винил-2-норборнена // Изв. АН. Сер. хим. 2022. С. 70-75
  31. Zamalyutin V.V., Ryabov A.V., Nichugovskii A.I., Skryabina A.Yu., Tkachenko O.Yu., Flid V.R. // Russ. Chem. Bull. 2022. V. 71. P. 70-75. https://doi.org/10.1007/s11172-022-3378-5.
  32. Замалютин В.В., Рябов А.В., Соломаха Е.А., Кацман Е.А., Флид В.Р., Ткаченко О.Ю., Шпынева М.А. Жидкофазное гетерогенное гидрирование дициклопентадиена // Изв. АН. Сер. хим. 2022. Т. 71. С. 1204-1208
  33. Zamalyutin V.V., Ryabov A.V., Solomakha E.A., Katsman E.A., Flid V.R., Tkachenko O.Yu., Shpinyova M.A. // Russ. Chem. Bull. 2022. V. 71. P. 1204-1208. https://doi.org/10.1007/s11172-022-3521-3.
  34. Замалютин В.В., Шамсиев Р.С., Флид В.Р. Механизм каталитической миграции двойной связи в 2-винилнорборнанах // Изв. АН. Сер. хим. 2022. № 10. С. 2142-2148
  35. Zamalyutin V.V., Shamsiev R.S., Flid V.R. Mechanism of catalytic migration of the double bond in 2-vinylnorbonanes // Russ. Chem. Bull. 2022. P. 2142-2148. https://doi.org/10.1007/s11172-022-3639-3.
  36. Замалютин В.В., Кацман Е А., Данюшевский В.Я., Флид В.Р., Подольский В.В., Рябов А.В. // Коорд. химия. 2021. Т. 47. С. 628-634
  37. Zamalyutin V.V., Katsman E.A., Danyushevsky V.Y., Flid V.R., Podol'skii V.V., Ryabov A.V. // Russ. J. Coord. Chem. 2021. Т. 47. № 10. P. 695-701. https://doi.org/10.31857/S0132344X21100091.
  38. Замалютин В.В., Кацман Е.А., Рябов А.В., Скрябина А.Ю., Шпынева М.А., Данюшевский В.Я., Флид В.Р. Кинетическая модель и механизм гидрирования ненасыщенных карбоциклических соединений на основе норборнадиена // Кинетика и катализ. 2022. Т. 63. № 2. С. 267-276
  39. Zamalyutin V.V., Katsman E.A., Ryabov A.V., Skryabina A.Y., Shpinyova M.A., Danyushevsky V.Y., Flid V.R. // Kinet. Catal. 2022. V. 63. № 2. P. 234-242. https://doi.org/10.31857/S0453881122020150.
  40. Menges N., Balci M. Catalyst-free hydrogenation of alkenes and alkynes with hydrazine in the presence of oxygen // SYNLETT. 2014. № 25. P. 671-676. https:// doi.org/10.1055/S-0033-1340554.
  41. Temkin O.N. Homogeneous catalysis with metal complexes: kinetic aspects and mechanisms. New York: Wiley. 2012. 830 р.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies