Error correction techniques in synthetic oligonucleotides and synthetic dna
- Authors: Sinyakov A.N.1, Kostina E.V.1
-
Affiliations:
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences
- Issue: Vol 59, No 4 (2025)
- Pages: 544-556
- Section: ОБЗОРЫ
- URL: https://journals.rcsi.science/0026-8984/article/view/320593
- DOI: https://doi.org/10.31857/S0026898425040021
- ID: 320593
Cite item
Abstract
Keywords
About the authors
A. N. Sinyakov
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences
Email: sinyakov@niboch.nsc.ru
Novosibirsk, 630090 Russia
E. V. Kostina
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of SciencesNovosibirsk, 630090 Russia
References
- Michelson A., Todd A. (1955) Nucleotides part XXXII. Synthesis of a dithymidine dinucleotide containing a 3ʹ: 5ʹ-internucleotidic linkage. J. Chem. Soc. 2632–2638.
- Gilham P.T., Khorana H.G. (1958) Studies on рolynucleotides. I. A new and general method for the chemical synthesis of the C5″-C3″ internucleotidic linkage. Syntheses of deoxyribo-dinucleotides. J. Am. Chem. Soc. 80(23), 6212–6222.
- Reese C.B. (2005). Oligo- and poly-nucleotides: 50 years of chemical synthesis. Org. Biomol. Chem. 3(21), 3851–3868.
- Синяков А.Н., Рябинин В.А., Костина Е.В. (2021) Применение олигонуклеотидов, полученных с помощью микрочиповых синтезаторов ДНК, для синтеза генетических конструкций. Молекуляр. биология. 55(4), 562–577.
- Agarwal K.L., Büchi H., Caruthers M.H., Gupta N., Khorana H.G., Kleppe K., Kumar A., Ohtsuka E., Rajbhandary U.L., Van de Sande J.H., Sgaramella V., Weber H., Yamada T. (1970) Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast. Nature. 227, 27–34.
- Sekiya T., Takeya T., Brown E.L., Belagaje R., Contreras R., Fritz H.J., Gait M.J., Lees R.G., Ryan M.J., Khorana H.G., Norris K.E. (1979) Total synthesis of a tyrosine suppressor transfer RNA gene. XVI. Enzymatic joinings to form the total 207-base pair-long DNA. J. Biol. Chem. 254, 5787–5801.
- Cello J., Paul A.V., Wimmer E. (2002) Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science. 297, 1016–1018.
- Smith H.O., Hutchison C.A.III, Pfannkoch C., Venter J.C. (2003) Generating a synthetic genome by whole genome assembly: φX174 bacteriophage from synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA. 100(26), 15440–15445.
- Noyce R.S., Lederman S., Evans D.H. (2018) Const- ruction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS One. 19(13), e0188453.
- Gibson D.G., Benders G.A., Andrews-Pfannkoch C., Denisova E.A., Baden-Tillson H., Zaveri J., Stockwell T.B., Brownley A., Thomas D.W., Algire M.A., Merryman C., Young L., Noskov V.N., Glass J.I., Venter J.C. Hutchison C.A. 3rd, Smith H.O. (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science. 319, 1215–1220.
- Gibson D.G., Glass J.I., Lartigue C., Noskov V.N., Chuang R.Y., Algire M.A., Benders G.A., Montague M.G., Ma L., Moodie M.M., Merryman C, Vashee S., Krishnakumar R., Assad-Garcia N., Andrews-Pfannkoch C., Hutchison C.A., 3rd, Smith H.O. (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science. 329, 52–56.
- Venetz J.E., Medico L.D., Wölfle A., Schächle P., Bucher Y., Appert D., Tschan F., Flores-Tinoco C.E., van Kooten M., Guennoun R., Deutsch S., Christen М., Christen B. (2019) Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality. Proc. Natl. Acad. Sci. USA. 116(16), 8070–8079.
- Filges S., Mouhanna P., Ståhlberg A. (2021) Digital quantification of chemical oligonucleotide synthesis errors. Clin. Chem. 67(10), 1384–1394.
- Caruthers M. (1985) Gene synthesis machines: DNA chemistry and its uses. Science. 230(4723), 281–285.
- Eckstein F. (1991) Oligonucleotides and analogues: a practical approach. IRL Press.
- Ellington A., Pollard J.D. Jr. (2001) Introduction to the synthesis and purification of oligonucleotides. Curr. Protoc. Nucl. Acid Chem. Appendix 3C.
- Jensen M.A., Davis R.W. (2018) Template-independent enzymatic oligonucleotide synthesis (TiEOS): its history, prospects, and challenges. Biochemistry. 57(12), 1821–1832.
- Pichon M., Hollenstein M. (2024) Controlled enzymatic synthesis of oligonucleotides. Commun. Chem. 7, 138.
- Verardo D., Adelizzi B., Rodriguez–Pinzon D.A., Moghaddam N., Thomйe E., Loman T., Godron X., Horgan A. (2023) Multiplex enzymatic synthesis of DNA with single–base resolution. Sci. Adv. 9(27), eadi0263.
- Eisenstein M. (2020) Enzymatic DNA synthesis enters new phase. Nat. Biotechnol. 38, 1113–1115.
- Amazon Prime for DNA – Has A New Era of Oligonucleotide Synthesis Begun? – Oligonucleotide Therapeutics Society. (2023).
- Ma S., Saaem I., Tian J. (2012) Error correction in gene synthesis technology. Trends Biotechnol. 30(3), 147–154.
- Sinha N.D., Jung K.E. (2015) Analysis and purification of synthetic nucleic acids using HPLC. Curr. Protoc. Nucl. Acid Chem. 61, 10.5.1–10.5.39.
- Fang S.Y., Fueangfung S. (2010) Scalable synthetic oligodeoxynucleotide purification with use of a catching by polymerization, washing, and releasing approach. Org. Lett. 12, 3720–3723.
- Pokharel D., Fang S. (2014) A highly convenient procedure for oligodeoxynucleotide purification. Open Org. Chem. J. 8, 15–18.
- Fang S., Arneson R., Yin Y., Yuan Y. (2024) De novo synthesis of error-free long oligos. Curr. Protoc. 4(10), e70028.
- Pokharel D., Fang S.Y. (2016) Polymerizable phosphoramidites with an acid-cleavable linker for eco-friendly synthetic oligodeoxynucleotide purification. Green Chem. 18, 1125–1136.
- Eriyagama D., Shahsavari S., Halami B., Lu B.Y., Wei F., Fang S. (2018) Parallel, large–scale, and long synthetic oligodeoxynucleotide purification using the catching full-length sequence by polymerization technique. Org. Process Res. Dev. 22, 1282‒1288.
- Jensen M., Davis R. (2017) RecJ 5ʹ exonuclease digestion of oligonucleotide failure strands: a “Green” method of Trityl-On purification. Biochemistry. 56(18), 2417–2424.
- Lietard J., Leger A., Erlich Y., Sadowski N., Timp W., Somoza M.M. (2021) Chemical and photochemical error rates in light-directed synthesis of complex DNA libraries. Nucl. Acids Res. 49(12), 6687–6701.
- Zhou X., Cai S., Hong A., You Q., Yu P., Sheng N., Srivannavit O., Muranjan S., Rouillard J.M., Xia Y., Zhang X., Xiang Q., Ganesh R., Zhu Q., Matejko A., Gulari E., Gao X. (2004) Microfluidic PicoArray synthesis of oligodeoxynucleotides and simultaneous assembling of multiple DNA sequences. Nucl. Acids Res. 32, 5409–5417.
- Tian J., Gong H., Sheng N., Zhou X., Gulari E., Gao X., Church G. (2004). Accurate multiplex gene synthesis from programmable DNA microchips. Nature. 432, 1050–1054.
- Church G.M., Tian J. (2005) Patent WO No. 2005/089110 A2. Geneva, Switzerland World Intellectual Property Organization International Bureau.
- Church G.M., Tian J. (2006) Patent US No. 2006/0127920 A1. Washington, DC: U.S. Patent and Trademark Office.
- Borovkov A.Y., Loskutov A.V., Robida M.D., Day K.M., Cano J.A., Olson T.L., Patel H., Brown K., Hunter P.D., Sykes K.F. (2010) High-quality gene assembly directly from unpurified mixtures of microarray-synthesized oligonucleotides. Nucl. Acids Res. 38(19), e180.
- Sun H.H., Zhu C., Wu Y., Guo J.-F. (2009) De novo synthesis and assembly of multiplex riboswitches in vitro. Biotechnol. Prog. 25(5), 1228–1235.
- Hsiau T.H.-C., Sukovich D., Elms P., Prince R.N., Stritmatter T., Ruan P., Curry B., Anderson P., Sampson J., Anderson J.C.(2015) A method for multiplex gene synthesis employing error correction based on expression. PLoS One. 10(3), e0119927.
- Matzas M., Stähler P.F., Kefer N., Siebelt N., Boisguérin V., Leonard J.T., Keller A., Stähler C.F., Häberle P., Gharizadeh B., Babrzadeh F., Church G.M. (2010) High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nat. Biotechnol. 28(12), 1291–1294.
- Stähler P.F., Carapito R., Stähler C.F., Malzas M., Leonard J.T., Jäger J., Beier M. (2010) Patent WO No. 2010/094772 Al. Geneva, Switzerland World Intellectual Property Organization International Bureau.
- Stähler P.F., Carapito R., Stähler C.F., Malzas M., Leonard J.T., Jäger J., Beier M. (2018) Patent US No. US2017/0267999 A1. Washington, DC: U.S. Patent and Trademark Office.
- Lee H., Kim H., Kim S., Ryu T., Kim H., Kwon D.B.S. (2015) A high-throughput optomechanical retrieval method for sequence-verified clonal DNA from the NGS platform. Nat. Сommun. 6, 6073.
- Bang D., Kim H., N., Lim H., Park S., Han H. (2020) US Patent No. 10526640 B2. Washington, DC: U.S. Patent and Trademark Office.
- Cho N., Seo H.N., Ryu T., Kwon E., Huh S., Noh J., Yeom H., Byungjin Hwang B., Ha H., Lee J.H., Kwon S., Bang D. (2018) High-throughput construction of multiple cas9 gene variants via assembly of high-depth tiled and sequence-verified oligonucleotides. Nucl. Acids Res. 46(9), e55.
- Yeom H., Ryu T., Lee A.C., Noh J., Lee H., Choi Y., Kim N., Kwon S. (2020) Cell-free bacteriophage genome synthesis using low-cost sequence-verified array-synthesized oligonucleotides. ACS Synth. Biol. 9(6), 1376–1384.
- Smith J.D., Schlecht U., Xu W., Suresh S., Horecka J., Proctor M.J., Aiyar R.S., Bennett R.A., Chu A., Li Y.F., Roy K., Davis R.W., Steinmetz L.M., Hyman R.W., Levy S.F., St Onge R.P. (2017) A method for high-throughput production of sequence-verified DNA libraries and strain collections. Mol. Syst. Biol. 13(2), 913.
- Kim H., Han H., Ahn J., Lee J., Cho N., Jang H., Kim H., Kwon S., Bang D. (2012) Shotgun DNA synthesis for the high-throughput construction of large DNA molecules. Nucl. Acids Res. 40(18), e140.
- Bang D., Kim H., Han H. (2019) US Patent No. 10358642 B2. Washington, DC: U.S. Patent and Trademark Office.
- Schwartz J.J., Lee C., Shendure J. (2012) Accurate gene synthesis with tag-directed retrieval of sequence-verified DNA molecules. Nat. Methods. 9(9), 913–915.
- Klein J.C., Lajoie M.J., Schwartz J.J., Strauch E.M., Nelson J., Baker D., Shendure J. (2016) Multiplex pairwise assembly of array-derived DNA oligonucleotides. Nucl. Acids Res. 44, e43.
- Lim H., Cho N., Ahn J., Park S., Jang H., Kim H., Han H., Lee J.H., Bang D. (2018) Highly selective retrieval of accurate DNA utilizing a pool of in situ-replicated DNA from multiple next-generation sequencing platforms. Nucl. Acids Res. 46(7), e40.
- Knyphausen P., Lindenburg L., Hollfelder F. (2021) Error-free synthetic DNA by molecular dictation. Trends Biotechnol. 39(9), 861–865.
- Choi H., Choi Y., Choi J., Lee A.C., Yeom H., Hyun J., Ryu T., Kwon S. (2022) Purification of multiplex oligonucleotide libraries by synthesis and selection. Nat. Biotechnol. 40, 47–53.
- Fuhrmann M., Oertel W., Berthold P., Hegemann P. (2005) Removal of mismatched bases from synthetic genes by enzymatic mismatch cleavage. Nucl. Acids Res. 33(6), e58.
- Young L., Dong Q. (2004) Two-step total gene synthesis method. Nucl. Acids Res. 32, e59.
- Sequeira A.F., Guerreiro C.I., Vincentelli R., Fontes C.M. (2016) T7 Endonuclease I mediates error correction in artificial gene synthesis. Mol. Biotechnol. 58, 573–584.
- Khilko Y., Weyman P.D., Glass J.I., Adams M.D., McNei M.A., Griffin P.B.(2018) DNA assembly with error correction on a droplet digital microfluidics platform. BMC Biotechnol. 18(1), 37.
- Kosuri S., Eroshenko N., Leproust E.M., Super M., Way J., Li J.B., Church G.M. (2010) Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat. Biotechnol. 28(12), 1295–1299.
- Dormitzer P.R., Suphaphiphat P., Gibson D.G., Wentworth D.E., Stockwell T.B., Algire M.A., Alperovich N., Barro M., Brown D.M., Craig S., Dattilo B.M., Denisova E.A., De Souza I., Eickmann M., Dugan V.G., Ferrari A., Gomila R.C., Han L., Judge C., Mane S., Matrosovich M., Merryman C., Palladino G., Palmer G.A., Spencer T., Strecker T., Trusheim H., Uhlendorff J., Wen Y., Yee A.C., Zaveri J., Zhou B., Becker S., Donabedian A., Mason P.W., Glass J.I., Rappuoli R., Venter J.C. (2013) Synthetic generation of influenza vaccine viruses for rapid response to pandemics. Sci. Transl. Med. 5(185), 185ra68.
- Saaem I., Ma S., Quan J., Tian J. (2012) Error correction of microchip synthesized genes using Surveyor nuclease. Nucl. Acids Res. 40(3), e23.
- Quan J., Saaem I., Tang N., Ma S., Negre N., Gong H., White K.P., Tian J. (2011) Parallel on-chip gene synthesis and application to optimization of protein expression. Nat. Biotechnol. 29(5), 449–452.
- Currin A., Swainston N., Day P.J., Kell D.B. (2014) SpeedyGenes: an improved gene synthesis method for the efficient production of error-corrected, synthetic protein libraries for directed evolution. Protein Eng. Des. Sel. 27(9), 273–280.
- Chan H.F., Ma S., Tian J., Leong K.W. (2017) High-throughput screening of microchip–synthesized genes in programmable double–emulsion droplets. Nanoscale. 9(10), 3485–3495.
- Vouillot L., Thélie A., Pollet N. (2015) Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 (Bethesda). 5(3), 407–415.
- Bang D., Church G.M. (2008) Gene synthesis by circular assembly amplification. Nat. Methods. 5, 37–39.
- Babon J.J., McKenzie M., Cotton R.G.H. (1999) Mutation detection using fluorescent enzyme mismatch cleavage with T4 endonuclease VII. Electrophoresis. 20, 1162–1170.
- Brown J., Brown T., Fox K.R. (2001) Affinity of mismatch-binding protein MutS for heteroduplexes containing different mismatches. Biochem. J. 354, 627–633.
- Whitehouse A., Deeble J., Parmar R., Taylor G.R., Markham A.F., Meredith D.M. (1997) Analysis of the mismatch and insertion/deletion binding properties of Thermus thermophilus, HB8, MutS. Biochem. Biophys. Res. Commun. 233, 834–837.
- Перевозчикова С.А., Романова Е.А., Орецкая Т.С., Фридхофф П., Кубарева Е.А. (2013) Современные представления о структурно-функциональной организации системы репарации неканонических пар нуклеотидов в ДНК. Acta Naturae. 5, 3(18), 18–35.
- Smith J., Modrich P. (1997) Removal of polymerase–produced mutant sequences from PCR products. Proc. Natl. Acad. Sci. USA. 94(13), 6847–6850.
- Binkowski B.F., Richmond K.E., Kaysen J., Sussman M.R., Belshaw P.J. (2005) Correcting errors in synthetic DNA through consensus shuffling. Nucl. Acids Res. 33(6), e55.
- Carr P.A., Park J.S., Lee Y.J., Yu T., Zhang S., Jacobson J.M. (2004) Protein–mediated error correction for de novo DNA synthesis. Nucl. Acids Res. 32(20), e162.
- Wan W., LI L., Xu Q., Wang Z., Yao Y., Wang R., Zhang J., Liu H., Gao X., Hong J. (2014) Error removal in microchip-synthesized DNA using immobilized MutS. Nucl. Acids Res. 42(12), e102.
- Zhang J., Wang Y., Chai B., Wang J., Li L., Liu M., Zhao G., Yao L., Gao X., Yin Y., Xu J. (2020) Efficient and low-cost error removal in DNA synthesis by a high-durability MutS. ACS Synth. Biol. 9, 940–952.
- Zhong T., Zhou Y., Bi L., Zhang X. —E. (2011) MutS-mediated enrichment of mutated DNA produced by directed evolution in vitro. World J. Microbiol. Biotechnol. 27, 1367–1372.
- Geschwind D.H., Rhee R., Nelson S.F. (1996) A biotinylated MutS fusion protein and its use in a rapid mutation screening technique. Genet. Anal. 13(4), 105–111.
- Sidore A.M., Plesa C., Samson J.A., Lubock N.B., Kosuri S. (2020) DropSynth 2.0: high–fidelity multiplexed gene synthesis in emulsions. Nucl. Acids Res. 48(16), e95.
- Murphy Z.R., Shields D.A., Evrony G.D. (2023) serial enrichment of heteroduplex DNA using a MutS-magnetic bead system. Biotechnol. J. 18(1), e2200323.
- Simmons B.L., McDonald N.D., Robinett N.G. (2023) Assessment of enzymatically synthesized DNA for gene assembly. Front. Bioeng. Biotechnol. 11, 1208784.
- Yin Y., Arneson R., Apostle A., Eriyagama A.M.D.N., Chillar K., Burke E., Jahfetson M., Yuan Y., Fang S. (2023) Long oligodeoxynucleotides: chemical synthesis, isolation via catching-by-polymerization, verification via sequencing, and gene expression demonstration. Beilstein J. Org. Chem. 19, 1957–1965.
- Yin Y., Arneson R., Yuan Y., Fang S. (2024) Long Oligos: direct chemical synthesis of genes with up to 1,728 nucleotides. ChemRxiv. https://doi.org/10.26434/chemrxiv-2024-zb7vk
- Lubock N.B., Zhang D., Sidore A.M., Church G.M., Kosuri S. (2017) A systematic comparison of error correction enzymes by next-generation sequencing. Nucl. Acids Res. 45(15), 9206–9217.
- Masaki Y., Onishi Y., Seio K. (2022) Quantification of synthetic errors during chemical synthesis of DNA and its suppression by non-canonical nucleosides. Sci. Rep. 12(1), 12095.
Supplementary files
