Redox status and protein glutathionylation in binase-treated HPV16-positive SiHa Carcinoma cells
- Autores: Nadyrova A.I.1, Petrushanko I.Y.2, Mitkevich V.A.2, Ilinskaya O.N.1
-
Afiliações:
- Kazan Federal University
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
- Edição: Volume 58, Nº 5 (2024)
- Páginas: 811-820
- Seção: МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ
- URL: https://journals.rcsi.science/0026-8984/article/view/281590
- DOI: https://doi.org/10.31857/S0026898424050109
- EDN: https://elibrary.ru/HUFEUW
- ID: 281590
Citar
Resumo
Human papillomavirus type 16 (HPV16) belongs to the high-risk type viruses and is associated by overexpression of E6 and E7 oncoproteins, which determine the oncogenic properties of the virus such as immortalization and malignant transformation of proliferating epithelial cells. The biogenesis of redox-sensitive proteins E6 and E7 at the early stages of viral infection leads to blocking of cell antioxidant defense system and ubiquintin-dependent degradation of p53 and Rb tumor suppressors. Maintaining high rates of tumor cell proliferation contributes to an increase in the reactive oxygen species (ROS) production level and a shift in the redox balance towards oxidative processes. Reduced glutathione (GSH) provides antioxidant protection to tumor cells through S-glutathionylation of thiol groups of redox-sensitive proteins, which leads to the appearance of multidrug-resistant forms of cancer. In this regard, drugs restoring redox balance and increasing susceptibility to antitumor therapy are of particular importance. We have established that in HPV-16-positive SiHa cells of cervical squamous cell carcinoma, Bacillus pumilus RNase (binase) modulates the redox-dependent regulatory mechanisms that ensure tumor cell resistance to apoptosis. Binase in nontoxic concentrations initiates a number of pre-apoptogenic changes, i.g., decreases ROS and GSH levels, suppresses the expression of E6 oncoprotein, activates the expression of p53 tumor suppressor, and reduces the mitochondrial potential of tumor cells. Binase-induced disruption of the mitochondrial membrane integrity is a signal for the mitochondrial apoptosis pathway activation.
Palavras-chave
Texto integral

Sobre autores
A. Nadyrova
Kazan Federal University
Autor responsável pela correspondência
Email: alsu.nadyrova@yandex.ru
Institute of Fundamental Medicine and Biology
Rússia, Kazan, 420008I. Petrushanko
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: alsu.nadyrova@yandex.ru
Rússia, Moscow, 119991
V. Mitkevich
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: alsu.nadyrova@yandex.ru
Rússia, Moscow, 119991
O. Ilinskaya
Kazan Federal University
Email: alsu.nadyrova@yandex.ru
Institute of Fundamental Medicine and Biology
Rússia, Kazan, 420008Bibliografia
- Green R.M., Graham M., O’Donovan M.R., Chipman J.K., Hodges N.J. (2006) Subcellular compartmentalization of glutathione: correlations with parameters of oxidative stress related to genotoxicity. Mutagenesis. 21, 383–390. doi: 10.1093/mutage/gel043
- Kennedy L., Sandhu J.K., Harper M.E., Cuperlovic-Culf M. (2020) Role of glutathione in cancer: from mechanisms to therapies. Biomolecules. 10, 1429. doi: 10.3390/biom10101429.
- Schafer F.Q., Buettner G.R. (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30, 1191–1212. doi: 10.1016/s0891-5849(01)00480-4
- Buettner G.R., Wagner B.A., Rodgers V.G. (2013) Quantitative redox biology: an approach to understand the role of reactive species in defining the cellular redox environment. Cell Biochem. Biophys. 67, 477–483. doi: 10.1007/s12013-011-9320-3
- Townsend D.M., Tew K.D., Tapiero H. (2003) The importance of glutathione in human disease. Biomed. Pharmacother. 57, 145–155. doi: 10.1016/S0753-3322(03)00043-X
- Vafa O., Wade M., Kern S., Beeche M., Pandita T.K., Hampton G.M., Wahl G.M. (2002) c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol. Cell. 9, 1031–1044. doi: 10.1016/S1097-2765(02)00520-8
- Weinberg F., Hamanaka R., Wheaton W.W., Weinberg S., Joseph J., Lopez M., Kalyanaraman B., Mutlu G., Budinger S., Chandel N.S. (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. USA. 107, 8788–8793. doi: 10.1073/pnas.1003428107
- Ballatori N., Krance S.M., Marchan R., Hammond C.L. (2009) Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol. Aspects Med. 30, 13–28. doi: 10.1016/j.mam.2008.08.004
- Mieyal J.J., Gallogly M.M., Qanungo S., Sabens E.A., Shelton M.D. (2008) Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid. Redox Signal. 10, 1941–1988. doi: 10.1089/ars.2008.2089
- Miller O.G., Mieyal J.J. (2015) Sulfhydryl-mediated redox signaling in inflammation: role in neurodegenerative diseases. Arch. Toxicol. 89, 1439–1467. doi: 10.1007/s00204-015-1496-7
- Xue X., Wang B., Du W., Zhang C., Song Y., Cai Y., Cen D., Wang L., Xiong Y., Jiang P., Zhu S., Zhao K.N., Zhang L. (2016) Generation of affibody molecules specific for HPV16 E7 recognition. Oncotarget. 7, 73995–74005. doi: 10.18632/oncotarget.12174
- Wondrak G.T. (2009) Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid. Redox Signal. 11, 3013–3069. doi: 10.1089/ars.2009.2541
- Tew K.D., Townsend D.M. (2011) Redox platforms in cancer drug discovery and development. Curr. Opin. Chem. Biol. 15, 156–161. doi: 10.1016/j.cbpa.2010.10.016
- Mironova N.L., Petrushanko I.Y., Patutina O.A., Sen’kova A.V., Simonenko O.V., Mitkevich V.A., Markov O.V., Zenkova M.A., Makarov A.A. (2013) Ribonuclease binase inhibits primary tumor growth and metastases via apoptosis induction in tumor cells. Cell Cycle. 12, 2120–2131. doi: 10.4161/cc.25164
- Mitkevich V.A., Kretova O.V., Petrushanko I.Y., Burnysheva K.M., Sosin D.V., Simonenko O.V., Ilinskaya O.N., Tchurikov N.A., Makarov A.A. (2013) Ribonuclease binase apoptotic signature in leukemic Kasumi-1 cells. Biochimie. 95, 1344–1349. doi: 10.1016/j.biochi.2013.02.016
- Бурнышева К.М., Петрушанко И.Ю., Спирин П.В., Прасолов В.С., Макаров А.А., Митькевич В.А. (2016) Рибонуклеаза биназа вызывает гибель клеток острого Т-лимфобластного лейкоза, индуцируя в них апоптоз. Молекуляр. биология. 50, 347–352. doi: 10.7868/S0026898416020038
- Шульга А.А., Окороков А.Л., Панов К.И., Курбанов Ф.Т., Чернов Б.К., Скрябин К.Г., Кирпичников М.П. (1994) Суперпродукция рибонуклеазы Bacillus intermedius 7P (биназы) в E. coli. Молекулярная биология. 28(2), 453–463.
- Mitkevich V.A., Burnysheva K.M., Petrushanko I.Y., Adzhubei A.A., Schulga A.A., Chumakov P.M., Makarov A.A. (2017) Binase treatment increases interferon sensitivity and apoptosis in SiHa cervical carcinoma cells by downregulating E6 and E7 human papilloma virus oncoproteins. Oncotarget. 8, 72666–72675. doi: 10.18632/oncotarget.20199
- Pal D., Rai A., Checker R., Patwardhan R.S., Singh B., Sharma D., Sandur S.K. (2021) Role of protein S-glutathionylation in cancer progression and development of resistance to anti-cancer drugs. Arch. Biochem. Biophys. 704, 108890. doi: 10.1016/j.abb.2021.108890
- Ilinskaya O.N., Singh I., Dudkina E., Ulyanova V., Kayumov A., Barreto G. (2016) Direct inhibition of oncogenic KRAS by Bacillus pumilus ribonuclease (binase). Biochim. Biophys. Acta. 1863, 1559–1567. doi: 10.1016/j.bbamcr.2016.04.005
- Mitkevich V.A., Petrushanko I.Y., Spirin P.V., Fedorova T.V., Kretova O.V., Tchurikov N.A., Prassolov V.S., Ilinskaya O.N., Makarov A.A. (2011) Sensitivity of acute myeloid leukemia Kasumi-1 cells to binase toxic action depends on the expression of KIT and АML1-ETO oncogenes. Cell Cycle. 10, 4090–4097. doi: 10.4161/cc.10.23.18210
- Митькевич В.А., Орлова Н.Н., Петрушанко И.Ю., Симоненко О.В., Спирин П.В., Прокофьева М.М., Горностаева А.С., Stocking C., Макаров А.А., Прасолов В.С. (2013) Экспрессия онкогена FLT3-ITD сообщает предшественникам B-клеток мыши линии BAF3 чувствительность к цитотоксическому действию биназы. Молекуляр. биология. 47, 282–282. https://doi.org/10.7868/s0026898413020092
- Zur Hausen H. (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat. Rev. Cancer. 2, 342–350. doi: 10.1038/Nrc798
- Velu C.S., Niture S.K., Doneanu C.E., Pattabiraman N., Srivenugopal K.S. (2007) Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress. Biochemistry. 46, 7765–7780. doi: 10.1021/bi700425y
- Petrushanko I.Y., Yakushev S., Mitkevich V.A., Kamanina Y.V., Ziganshin R.H., Meng X., Anashkina A.A., Makhro A., Lopina O.D., Gassmann M., Makarov A.A., Bogdanova A. (2012) S-glutathionylation of the Na, K-ATPase catalytic α subunit is a determinant of the enzyme redox sensitivity. J. Biol. Chem. 287, 32195–32205. doi: 10.1074/jbc.M112.391094
- Alevizopoulos K., Calogeropoulou T., Lang F., Stournaras C. (2014) Na+/K+ ATPase inhibitors in cancer. Curr. Drug Targets. 15, 988–1000. doi: 10.2174/1389450115666140908125025
- Bejček J., Spiwok V., Kmoníčková E., Rimpelová S. (2021) Na+/K+-ATPase revisited: on its mechanism of action, role in cancer, and activity modulation. Molecules. 26, 1905. doi: 10.3390/molecules26071905
- Lushchak V.I. (2012) Glutathione homeostasis and functions: potential targets for medical interventions. J. Amino Acids. 2012, 736837. doi: 10.1155/2012/736837
- Zou J., Shang X., Li C., Ouyang J., Li B., Liu X. (2019) Effects of cadmium on mineral metabolism and antioxidant enzyme activities in Salix matsudana Koidz. Pol. J. Environ. Stud. 28, 989–999. doi: 10.15244/pjoes/81697
- Allocati N., Masulli M., Di Ilio C., Federici L. (2018) Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis. 7, 8. doi: 10.103/s41389-017-0025-3
- Ardelt B., Juan G., Burfeind P., Salomon T., Wu J.M., Hsieh T.C., Li X., Sperry R., Pozarowski P., Shogen K., Ardelt W., Darzynkiewicz Z. (2007) Onconase, an anti-tumor ribonuclease suppresses intracellular oxidative stress. Int. J. Oncol. 31, 663–669. doi: 10.3892/ijo.31.3.663
- Tsai S.Y., Ardelt B., Hsieh T.C., Darzynkiewicz Z., Shogen K., Wu J.M. (2004) Treatment of Jurkat acute T-lymphocytic leukemia cells by onconase (Ranpirnase) is accompanied by an altered nucleocytoplasmic distribution and reduced expression of transcription factor NF-B. Int. J. Oncol. 25, 1745–1752. doi: 10.3892/ijo.25.6.1745
- Fratelli M., Gianazza E., Ghezzi P. (2004) Redox proteomics: identification and functional role of glutathionylated proteins. Expert Rev. Proteomics. 1, 365–376. doi: 10.1586/14789450.1.3.365
- Dalle-Donne I., Rossi R., Giustarini D., Colombo R., Milzani A. (2007) S-glutathionylation in protein redox regulation. Free Radic. Biol. Med. 43, 883–898. doi: 10.1016/j.freeradbiomed.2007.06.014
- Fiaschi T., Cozzi G., Raugei G., Formigli L., Ramponi G., Chiarugi P. (2006) Redox regulation of β-actin during integrin-mediated cell adhesion. J. Biol. Chem. 281, 22983–22991. doi: 10.1074/jbc.M603040200
- Lu G.D., Shen H.M., Chung M.C., Ong C.N. (2007) Critical role of oxidative stress and sustained JNK activation in aloe-emodin-mediated apoptotic cell death in human hepatoma cells. Carcinogenesis. 28, 1937–1945. doi: 10.1093/carcin/bgm143
- Cuadrado A., Garcia-Fernandez L.F., Gonzalez L., Suarez Y., Losada A., Alcaide V., Martinez T., Fernandez-Sousa J.M., Sanchez Puelles J.M., Munoz A. (2003) Aplidin induces apoptosis in human cancer cells via glutathione depletion and sustained activation of the epidermal growth factor receptor, Src, JNK, and p38 MAPK. J. Biol. Chem. 278, 241–250. doi: 10.1074/jbc.M201010200
- Ji L., Shen K., Jiang P., Morahan G., Wang Z. (2011) Critical roles of cellular glutathione homeostasis and jnk activation in andrographolide-mediated apoptotic cell death in human hepatoma cells. Mol. Carcinog. 50, 580–591. doi: 10.1002/mc.20741
- Velu C.S., Niture S.K., Doneanu C.E., Pattabiraman N., Srivenugopal K.S. (2007) Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress. Biochemistry. 46, 7765–7780. doi: 10.1021/bi700425y
- Mitkevich V.A., Petrushanko I.Y., Kretova O.V., Zelenikhin P.V., Prassolov V.S., Tchurikov N.A., Ilinskaya O.N., Makarov A.A. (2010) Oncogenic c-kit transcript is a target for binase. Cell Cycle. 9, 2674–2678. doi: 10.4161/cc.9.13.12150
- Mitkevich V.A., Petrushanko I.Y., Makarov A.A. (2019) RNases disrupt the adaptive potential of malignant cells: perspectives for therapy. Front. Pharmacol. 10, 922. doi: 10.3389/fphar.2019.00922
- Mijatovic T., Dufrasne F., Kiss R. (2012) Na+/K+-ATPase and cancer. Pharm. Pat. Anal. 1, 91–106. doi: 10.4155/ppa.12.3
- Eskiocak U., Ramesh V., Gill J.G., Zhao Z., Yuan S.W., Wang M., Vandergriff T., Shackleton M., Quintana E., Frankel A., Johnson T., DeBerardinis R., Morrison S.J. (2016) Synergistic effects of ion transporter and MAP kinase pathway inhibitors in melanoma. Nat. Commun. 7, 12336. doi: 10.1038/ncomms12336
- Ren J., Gao X., Guo X., Wang N., Wang X. (2022) Research progress in pharmacological activities and applications of cardiotonic steroids. Front. Pharmacol. 13, 902459. doi: 10.3389/fphar.2022.902459
- Ayogu J.I., Odoh A.S. (2020) Prospects and therapeutic applications of cardiac glycosides in cancer remediation. ACS Comb. Sci. 22, 543–553. doi: 10.1021/acscombsci.0c00082
- Chang Y.M., Shih Y.L., Chen C.P., Liu K.L., Lee M.H., Lee M.Z., Hou H.T., Huang H.C., Lu H.F., Peng S.F.., Chen K.W., Yeh M.Y., Chung J.G. (2019) Ouabain induces apoptotic cell death in human prostate DU 145 cancer cells through DNA damage and TRAIL pathways. Environ. Toxicol. 34, 1329–1339. doi: 10.1002/tox.22834
- Osman M.H., Farrag E., Selim M., Osman M.S., Hasanine A., Selim A. (2017) Cardiac glycosides use and the risk and mortality of cancer; systematic review and meta-analysis of observational studies. PloS One. 12, e0178611. doi: 10.1371/journal.pone.0178611
- Ortega A.L., Mena S., Estrela J.M. (2011) Glutathione in cancer cell death. Cancers. 3, 1285–1310. doi: 10.3390/cancers3011285
- Ghosh S., Pulinilkunnil T., Yuen G., Kewalramani G., An D., Qi D., Abrahani A., Rodrigues B. (2005) Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletion. Am. J. Physiol. Heart Circ. Physiol. 289, H768–H776. doi: 10.1152/ajpheart.00038.2005
- Armstrong J.S., Steinauer K.K., Hornung B., Irish J.M., Lecane P., Birrell G.W., Peehl D.M., Knox S.J. (2002) Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line. Cell Death Differ. 9, 252–263. doi: 10.1038/sj.cdd.4400959
- Makarov A.A., Kolchinsky A., Ilinskaya O.N. (2008) Binase and other microbial RNases as potential anticancer agents. BioEssays. 30, 781–790. doi: 10.1002/bies.20789
Arquivos suplementares
