Overexpression of MKRN2 Inhibits the Growth of Ovarian Cancer Cells

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Ovarian cancer has a high mortality with low five-year survival rates. The role of the E3 ligase Makorin ring finger protein 2 (MKRN2) in ovarian cancer is unknown. This study investigated the impact of MKRN2 on the growth of ovarian cancer. MKRN2 expression in ovarian cancer tissue was analyzed by immunohistochemistry. Overexpression of MKRN2 was induced in two ovarian cancer cell lines (SKOV3 and CAOV3) by lentivirus transfection, and expression levels were verified by western blotting. Proliferation and growth were determined by CCK-8 and colony formation assays, while migration was examined using transwell assays and apoptosis by flow cytometry. Xenograft tumors of transfected SKOV3 cells were established in mice, and immunohistochemistry and TUNEL assays measured MKRN2 levels and apoptosis in tumor cells. Reduced levels of MKRN2 in cancerous tissue relative to non-cancerous ovarian tissues. Lentiviral-based MKRN2 overexpression in SKOV3 and CAOV3 cells reduced tumor-associated behavior while inducing apoptosis in vitro. In xenograft tumors, MKRN2 overexpression inhibited ovarian cancer growth and increased apoptosis in vivo. These findings imply the MKRN2 involvement in ovarian carcinogenesis and suggest its potential for treating the disease.

Авторлар туралы

F. Jiang

Department of Obstetrics and Gynecology, Dushu Lake Hospital affiliated to Soochow University, Soochow University

Email: zhangyueming@suda.edu.cn
China, Suzhou

Q. Xia

Obstetrics and Gynecology Department, Nantong Haimen District People’s Hospital

Email: zhangyueming@suda.edu.cn
China, Nantong

L. Wu

Suzhou Industrial Park Centers for Disease Control and Prevention

Email: zhangyueming@suda.edu.cn
China, Suzhou

Y. Zhang

Department of Obstetrics and Gynecology, Dushu Lake Hospital affiliated to Soochow University, Soochow University

Хат алмасуға жауапты Автор.
Email: zhangyueming@suda.edu.cn
China, Suzhou

Әдебиет тізімі

  1. Tew W.P., Lacchetti C., Ellis A., Maxian K., Banerjee S., Bookman M., Jones M.B., Lee J.M., Lheureux S., Liu J.F. Moore K.N., Muller C., Rodriguez P., Walsh C., Westin S.N., Kohn E.C. (2020) PARP inhibitors in the management of ovarian cancer: ASCO guideline. J. Clin. Oncol. 38(30), 3468‒3493.
  2. Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. (2021) Cancer statistics, 2021. CA Cancer J. Clin. 71(1), 7–33.
  3. Lin C.N., Tsai Y.C., Hsu C.C., Liang Y.L., Wu Y.Y., Kang C.Y., Lin C.H., Hsu P.H., Lee G.B., Hsu K.F. (2021) An aptamer interacting with heat shock protein 70 shows therapeutic effects and prognostic ability in serous ovarian cancer. Mol. Therapy Nucl. Acids. 23, 757–768.
  4. Lheureux S., Gourley C., Vergote I., Oza A.M. (2019) Epithelial ovarian cancer. Lancet. 393(10177), 1240–1253.
  5. Wolf E.J., Miles A., Lee E.S., Nabeel-Shah S., Greenblatt J.F., Palazzo A.F., Tropepe V., Emili A. (2020) MKRN2 physically interacts with GLE1 to regulate mRNA export and zebrafish retinal development. Cell Rep. 31(8), 107693.
  6. Böhne A., Darras A., D’Cotta H., Baroiller J.F., Galiana-Arnoux D., Volff J.N. (2010) The vertebrate makorin ubiquitin ligase gene family has been shaped by large-scale duplication and retroposition from an ancestral gonad-specific, maternal-effect gene. BMC Genomics. 11, 721.
  7. Zhang Q., Meng Y., Zhang L., Chen J., Zhu D. (2009) RNF13: a novel RING-type ubiquitin ligase over-expressed in pancreatic cancer. Cell Res. 19(3), 348–357.
  8. Ulrich H.D. (2002) Natural substrates of the proteasome and their recognition by the ubiquitin system. Curr. Topics Microbiol. Immunol. 268, 137–174.
  9. Shin C., Ito Y., Ichikawa S., Tokunaga M., Sakata-Sogawa K., Tanaka T. (2017) MKRN2 is a novel ubiquitin E3 ligase for the p65 subunit of NF-κB and negatively regulates inflammatory responses. Sci. Rep. 7, 46097.
  10. Jiang J., Xu Y., Ren H., Wudu M., Wang Q., Song X., Su H., Jiang X., Jiang L., Qiu X. (2018) MKRN2 inhibits migration and invasion of non-small-cell lung cancer by negatively regulating the PI3K/Akt pathway. J. Exp. Clin. Cancer Res. 37(1), 189.
  11. Zhang Y., Cui N., Zheng G. (2020) Ubiquitination of P53 by E3 ligase MKRN2 promotes melanoma cell proliferation. Oncol. Lett. 19(3), 1975–1984.
  12. Jia C., Tang H., Yang Y., Yuan S., Han T., Fang M., Huang S., Hu R., Li C., Geng W. (2020) Ubiquitination of IGF2BP3 by E3 ligase MKRN2 regulates the proliferation and migration of human neuroblastoma SHSY5Y cells. Biochem. Biophys. Res. Commun. 529(1), 43–50.
  13. Abreu A.P., Macedo D.B., Brito V.N., Kaiser U.B., Latronico A.C. (2015) A new pathway in the control of the initiation of puberty: the MKRN3 gene. J. Mol. Endocrinol. 54(3), R131–139.
  14. Qian Y.C., Xie Y.X., Wang C.S., Shi Z.M., Jiang C.F., Tang Y.Y., Qian X., Wang L., Jiang B.H. (2020) Mkrn2 deficiency induces teratozoospermia and male infertility through p53/PERP-mediated apoptosis in testis. Asian J. Androl. 22(4), 414–421.
  15. Wadekar H.B., Sahi V.P., Morita E.H., Abe S. (2013) MKRN expression pattern during embryonic and post-embryonic organogenesis in rice (Oryza sativa L. var. Nipponbare). Planta. 237(4), 1083–1095.
  16. Hildebrandt A., Brüggemann M., Rücklé C., Boerner S., Heidelberger J.B., Busch A., Hänel H., Voigt A., Möckel M.M., Ebersberger S., Scholz A., Dold A., Schmid T., Ebersberger I., Roignant J.Y., Zarnack K., König J., Beli P. (2019) The RNA-binding ubiquitin ligase MKRN1 functions in ribosome-associated quality control of poly(A) translation. Genome Biol. 20(1), 216.
  17. Herrera R.A., Kiontke K., Fitch D.H. (2016) Makorin ortholog LEP-2 regulates LIN-28 stability to promote the juvenile-to-adult transition in Caenorhabditis elegans. Development. 143(5), 799–809.
  18. Liu M., Zhong J., Zeng Z., Huang K., Ye Z., Deng S., Chen H., Xu F., Li Q., Zhao G. (2019) Hypoxia-induced feedback of HIF-1α and lncRNA-CF129 contributes to pancreatic cancer progression through stabilization of p53 protein. Theranostics. 9(16), 4795–4810.
  19. Xu Y., Sun J.Y., Jin Y.F., Yu H. (2018) PCAT6 participates in the development of gastric cancer through endogenously competition with microRNA-30. Eur. Rev. Med. Pharmacol. Sci. 22(16), 5206–5213.
  20. Lee K.Y., Chan K.Y., Tsang K.S., Chen Y.C., Kung H.F., Ng P.C., Li C.K., Leung K.T., Li K. (2014) Ubiquitous expression of MAKORIN-2 in normal and malignant hematopoietic cells and its growth promoting activity. PloS One. 9(3), e92706.

© F.Z. Jiang, Q.J. Xia, L. Wu, Y.M. Zhang, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>