Construction of Vectors for the Genome Editing of Saccharomyces Yeast Using CRISPR-Cas9 System

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

New vectors for the yeast genome editing using CRISPR/Cas9 were constructed. A system for cloning of new targets using the standard methods (PCR‒restriction‒ligation) was developed and successfully applied. The constructed vectors allowed us to obtain the sup35-25 mutants, deletion of the PSH1 gene and disruption of the NAM7 (UPF1). A convenient method for identifying plasmids with a new target was tested. A detailed description of the cloning technique used and selection of plasmids with the new targets is provided.

全文:

受限制的访问

作者简介

A. Matveenko

St Petersburg State University

Email: g.zhuravleva@spbu.ru
俄罗斯联邦, St Petersburg, 199034

A. Mikhailichenko

St Petersburg State University

Email: g.zhuravleva@spbu.ru
俄罗斯联邦, St Petersburg, 199034

G. Zhouravleva

St Petersburg State University; Laboratory of Amyloid Biology SPbU

编辑信件的主要联系方式.
Email: g.zhuravleva@spbu.ru
俄罗斯联邦, St Petersburg, 199034; St Petersburg, 199034

参考

  1. Chernoff Y.O., Lindquist S.L., Ono B., Inge-Vechtomov S.G., Liebman S.W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+] // Science. 1995. V. 268. P. 880‒884. https://doi.org/10.1126/science.7754373
  2. DiCarlo J.E., Norville J.E., Mali P., Rios X., Aach J., Church G.M. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems // Nucl. Acids Res. 2013. V. 41. P. 4336‒4343.
  3. https://doi.org/10.1093/nar/gkt135
  4. Giersch R.M., Finnigan G.C. Yeast still a beast: diverse applications of CRISPR/Cas editing technology in S. cerevisiae // Yale J. Biol. Med. 2017. V. 90. P. 643‒651.
  5. Gietz R.D., Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites // Gene. 1988. V. 74. P. 527‒534.
  6. https://doi.org/10.1016/0378-1119(88)90185-0
  7. Gietz R., Schiestl R., Willems A., Woods R. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure // Yeast. 1995. V. 11. P. 355‒360. https://doi.org/10.1002/yea.320110408
  8. Horwitz A.A., Walter J.M., Schubert M.G., Kung S.H., Hawkins K., Platt D.M., Hernday A.D., Mahatdejkul-Meadows T., Szeto W., Chandran S.S., Newman J.D. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas // Cell Syst. 2015 V. 1. P. 88‒96.
  9. https://doi.org/10.1016/j.cels.2015.02.001
  10. Inge-Vechtomov S., Zhouravleva G., Philippe M. Eukaryotic release factors (eRFs) history // Biol. Cell. 2003. V. 95. P. 195–209.
  11. https://doi.org/10.1016/s0248-4900(03)00035-2
  12. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity // Science. 2012. V. 337. P. 816‒821.
  13. https://doi.org/10.1126/science.1225829
  14. Laughery M.F., Hunter T., Brown A., Hoopes J., Ostbye T., Shumaker T., Wyrick J.J. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae // Yeast. 2015. V. 32. P. 711‒720. https://doi.org/10.1002/yea.3098
  15. Maksiutenko E.M., Barbitoff Y.A., Matveenko A.G., Moskalenko S.E., Zhouravleva G.A. Gene amplification as a mechanism of yeast adaptation to nonsense mutations in release factor genes // Genes (Basel). 2021. V. 12. Art. 2019. https://doi.org/10.3390/genes12122019
  16. Mans R., van Rossum H.M., Wijsman M., Backx A., Kuijpers N.G., van den Broek M., Daran-Lapujade P., Pronk J.T., van Maris A.J., Daran J.M. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae // FEMS Yeast Res. 2015. V. 15. Art. fov004.
  17. https://doi.org/10.1093/femsyr/fov004
  18. Moskalenko S.E., Chabelskaya S.V., Inge-Vechtomov S.G., Philippe M., Zhouravleva G.A. Viable nonsense mutants for the essential gene SUP45 of Saccharomyces cerevisiae // BMC Mol. Biol. 2003. V. 10. Art. 2.
  19. https://doi.org/10.1186/1471-2199-4-2
  20. Volkov K., Aksenova A., Soom M., Osipov K., Svitin A., Kurischko C., Shkundina I., Ter-Avanesyan M., Inge-Vechtomov S., Mironova L. Novel non-Mendelian determinant involved in the control of translation accuracy in Saccharomyces cerevisiae // Genetics. 2002. V. 160. Р. 25‒36. https://doi.org/10.1093/genetics/160.1.25

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Creation of a convenient target cloning system into a vector for editing the Saccharomyces cerevisiae genome using CRISPR-Cas9. (a) — A diagram of the location of the sup35-25 mutation and targets S35(-25) A and S35(-25) B in the SUP35 gene. (b) — A map of the YEplac181GC9H-sgS35 plasmid(-25) B; created using the SnapGene Viewer program. (c) — A scheme for obtaining sup35-25 mutants. (d) — Colony growth of strain 74-D694 transformed by plasmids in these combinations. (e) is a scheme for cloning new targets into the YEplac181GC9H-sgS35(-25) B vector and selecting E. coli colonies carrying a correctly constructed new vector.

下载 (485KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##