Construction of Vectors for the Genome Editing of Saccharomyces Yeast Using CRISPR-Cas9 System

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

New vectors for the yeast genome editing using CRISPR/Cas9 were constructed. A system for cloning of new targets using the standard methods (PCR‒restriction‒ligation) was developed and successfully applied. The constructed vectors allowed us to obtain the sup35-25 mutants, deletion of the PSH1 gene and disruption of the NAM7 (UPF1). A convenient method for identifying plasmids with a new target was tested. A detailed description of the cloning technique used and selection of plasmids with the new targets is provided.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Matveenko

St Petersburg State University

Email: g.zhuravleva@spbu.ru
Ресей, St Petersburg, 199034

A. Mikhailichenko

St Petersburg State University

Email: g.zhuravleva@spbu.ru
Ресей, St Petersburg, 199034

G. Zhouravleva

St Petersburg State University; Laboratory of Amyloid Biology SPbU

Хат алмасуға жауапты Автор.
Email: g.zhuravleva@spbu.ru
Ресей, St Petersburg, 199034; St Petersburg, 199034

Әдебиет тізімі

  1. Chernoff Y.O., Lindquist S.L., Ono B., Inge-Vechtomov S.G., Liebman S.W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+] // Science. 1995. V. 268. P. 880‒884. https://doi.org/10.1126/science.7754373
  2. DiCarlo J.E., Norville J.E., Mali P., Rios X., Aach J., Church G.M. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems // Nucl. Acids Res. 2013. V. 41. P. 4336‒4343.
  3. https://doi.org/10.1093/nar/gkt135
  4. Giersch R.M., Finnigan G.C. Yeast still a beast: diverse applications of CRISPR/Cas editing technology in S. cerevisiae // Yale J. Biol. Med. 2017. V. 90. P. 643‒651.
  5. Gietz R.D., Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites // Gene. 1988. V. 74. P. 527‒534.
  6. https://doi.org/10.1016/0378-1119(88)90185-0
  7. Gietz R., Schiestl R., Willems A., Woods R. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure // Yeast. 1995. V. 11. P. 355‒360. https://doi.org/10.1002/yea.320110408
  8. Horwitz A.A., Walter J.M., Schubert M.G., Kung S.H., Hawkins K., Platt D.M., Hernday A.D., Mahatdejkul-Meadows T., Szeto W., Chandran S.S., Newman J.D. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas // Cell Syst. 2015 V. 1. P. 88‒96.
  9. https://doi.org/10.1016/j.cels.2015.02.001
  10. Inge-Vechtomov S., Zhouravleva G., Philippe M. Eukaryotic release factors (eRFs) history // Biol. Cell. 2003. V. 95. P. 195–209.
  11. https://doi.org/10.1016/s0248-4900(03)00035-2
  12. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity // Science. 2012. V. 337. P. 816‒821.
  13. https://doi.org/10.1126/science.1225829
  14. Laughery M.F., Hunter T., Brown A., Hoopes J., Ostbye T., Shumaker T., Wyrick J.J. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae // Yeast. 2015. V. 32. P. 711‒720. https://doi.org/10.1002/yea.3098
  15. Maksiutenko E.M., Barbitoff Y.A., Matveenko A.G., Moskalenko S.E., Zhouravleva G.A. Gene amplification as a mechanism of yeast adaptation to nonsense mutations in release factor genes // Genes (Basel). 2021. V. 12. Art. 2019. https://doi.org/10.3390/genes12122019
  16. Mans R., van Rossum H.M., Wijsman M., Backx A., Kuijpers N.G., van den Broek M., Daran-Lapujade P., Pronk J.T., van Maris A.J., Daran J.M. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae // FEMS Yeast Res. 2015. V. 15. Art. fov004.
  17. https://doi.org/10.1093/femsyr/fov004
  18. Moskalenko S.E., Chabelskaya S.V., Inge-Vechtomov S.G., Philippe M., Zhouravleva G.A. Viable nonsense mutants for the essential gene SUP45 of Saccharomyces cerevisiae // BMC Mol. Biol. 2003. V. 10. Art. 2.
  19. https://doi.org/10.1186/1471-2199-4-2
  20. Volkov K., Aksenova A., Soom M., Osipov K., Svitin A., Kurischko C., Shkundina I., Ter-Avanesyan M., Inge-Vechtomov S., Mironova L. Novel non-Mendelian determinant involved in the control of translation accuracy in Saccharomyces cerevisiae // Genetics. 2002. V. 160. Р. 25‒36. https://doi.org/10.1093/genetics/160.1.25

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Creation of a convenient target cloning system into a vector for editing the Saccharomyces cerevisiae genome using CRISPR-Cas9. (a) — A diagram of the location of the sup35-25 mutation and targets S35(-25) A and S35(-25) B in the SUP35 gene. (b) — A map of the YEplac181GC9H-sgS35 plasmid(-25) B; created using the SnapGene Viewer program. (c) — A scheme for obtaining sup35-25 mutants. (d) — Colony growth of strain 74-D694 transformed by plasmids in these combinations. (e) is a scheme for cloning new targets into the YEplac181GC9H-sgS35(-25) B vector and selecting E. coli colonies carrying a correctly constructed new vector.

Жүктеу (485KB)

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>