Construction of Vectors for the Genome Editing of Saccharomyces Yeast Using CRISPR-Cas9 System

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New vectors for the yeast genome editing using CRISPR/Cas9 were constructed. A system for cloning of new targets using the standard methods (PCR‒restriction‒ligation) was developed and successfully applied. The constructed vectors allowed us to obtain the sup35-25 mutants, deletion of the PSH1 gene and disruption of the NAM7 (UPF1). A convenient method for identifying plasmids with a new target was tested. A detailed description of the cloning technique used and selection of plasmids with the new targets is provided.

Full Text

Restricted Access

About the authors

A. G. Matveenko

St Petersburg State University

Email: g.zhuravleva@spbu.ru
Russian Federation, St Petersburg, 199034

A. S. Mikhailichenko

St Petersburg State University

Email: g.zhuravleva@spbu.ru
Russian Federation, St Petersburg, 199034

G. A. Zhouravleva

St Petersburg State University; Laboratory of Amyloid Biology SPbU

Author for correspondence.
Email: g.zhuravleva@spbu.ru
Russian Federation, St Petersburg, 199034; St Petersburg, 199034

References

  1. Chernoff Y.O., Lindquist S.L., Ono B., Inge-Vechtomov S.G., Liebman S.W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+] // Science. 1995. V. 268. P. 880‒884. https://doi.org/10.1126/science.7754373
  2. DiCarlo J.E., Norville J.E., Mali P., Rios X., Aach J., Church G.M. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems // Nucl. Acids Res. 2013. V. 41. P. 4336‒4343.
  3. https://doi.org/10.1093/nar/gkt135
  4. Giersch R.M., Finnigan G.C. Yeast still a beast: diverse applications of CRISPR/Cas editing technology in S. cerevisiae // Yale J. Biol. Med. 2017. V. 90. P. 643‒651.
  5. Gietz R.D., Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites // Gene. 1988. V. 74. P. 527‒534.
  6. https://doi.org/10.1016/0378-1119(88)90185-0
  7. Gietz R., Schiestl R., Willems A., Woods R. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure // Yeast. 1995. V. 11. P. 355‒360. https://doi.org/10.1002/yea.320110408
  8. Horwitz A.A., Walter J.M., Schubert M.G., Kung S.H., Hawkins K., Platt D.M., Hernday A.D., Mahatdejkul-Meadows T., Szeto W., Chandran S.S., Newman J.D. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas // Cell Syst. 2015 V. 1. P. 88‒96.
  9. https://doi.org/10.1016/j.cels.2015.02.001
  10. Inge-Vechtomov S., Zhouravleva G., Philippe M. Eukaryotic release factors (eRFs) history // Biol. Cell. 2003. V. 95. P. 195–209.
  11. https://doi.org/10.1016/s0248-4900(03)00035-2
  12. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity // Science. 2012. V. 337. P. 816‒821.
  13. https://doi.org/10.1126/science.1225829
  14. Laughery M.F., Hunter T., Brown A., Hoopes J., Ostbye T., Shumaker T., Wyrick J.J. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae // Yeast. 2015. V. 32. P. 711‒720. https://doi.org/10.1002/yea.3098
  15. Maksiutenko E.M., Barbitoff Y.A., Matveenko A.G., Moskalenko S.E., Zhouravleva G.A. Gene amplification as a mechanism of yeast adaptation to nonsense mutations in release factor genes // Genes (Basel). 2021. V. 12. Art. 2019. https://doi.org/10.3390/genes12122019
  16. Mans R., van Rossum H.M., Wijsman M., Backx A., Kuijpers N.G., van den Broek M., Daran-Lapujade P., Pronk J.T., van Maris A.J., Daran J.M. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae // FEMS Yeast Res. 2015. V. 15. Art. fov004.
  17. https://doi.org/10.1093/femsyr/fov004
  18. Moskalenko S.E., Chabelskaya S.V., Inge-Vechtomov S.G., Philippe M., Zhouravleva G.A. Viable nonsense mutants for the essential gene SUP45 of Saccharomyces cerevisiae // BMC Mol. Biol. 2003. V. 10. Art. 2.
  19. https://doi.org/10.1186/1471-2199-4-2
  20. Volkov K., Aksenova A., Soom M., Osipov K., Svitin A., Kurischko C., Shkundina I., Ter-Avanesyan M., Inge-Vechtomov S., Mironova L. Novel non-Mendelian determinant involved in the control of translation accuracy in Saccharomyces cerevisiae // Genetics. 2002. V. 160. Р. 25‒36. https://doi.org/10.1093/genetics/160.1.25

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Creation of a convenient target cloning system into a vector for editing the Saccharomyces cerevisiae genome using CRISPR-Cas9. (a) — A diagram of the location of the sup35-25 mutation and targets S35(-25) A and S35(-25) B in the SUP35 gene. (b) — A map of the YEplac181GC9H-sgS35 plasmid(-25) B; created using the SnapGene Viewer program. (c) — A scheme for obtaining sup35-25 mutants. (d) — Colony growth of strain 74-D694 transformed by plasmids in these combinations. (e) is a scheme for cloning new targets into the YEplac181GC9H-sgS35(-25) B vector and selecting E. coli colonies carrying a correctly constructed new vector.

Download (485KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies