Состав микробных сообществ как индикатор состояния водоемов, расположенных на морском побережье (на примере залива Канда, Кандалакшский залив Белого моря)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Залив (губа) Канда относится к водоемам, образовавшимся в результате строительства железнодорожной дамбы (1916 г.) и последовавшей изоляции морской лагуны от основного бассейна Кандалакшского залива Белого моря. В результате сокращения влияния приливо-отливных течений, перемешивающих водную толщу морской лагуны, изменился гидрологический режим водоема. Сокращение водообмена привело к появлению придонных застойных вод, лишенных кислорода, а также сероводородного заражения. При этом в южной части акватории залива Канда сохранилось пресное озеро. В различных акваториях залива Канда проведены исследования состава микробного сообщества придонного водного слоя. Показано, что в придонной воде залива Канда меняется кислородный режим, возрастает концентрация сероводорода и метана, активизируются процессы сульфатредукции и метанокисления. Заметно меняется состав микробного сообщества, уменьшается численность истинно морских и пресноводных микроорганизмов, развиваются бактерии и археи, доминирующие в микробных сообществах аноксийных вод меромиктических водоемов. Среди общего разнообразия микроорганизмов выявлены индикаторные виды, увеличивающие свое обилие. К таким видам относятся археи из родов Methanoregula и Methanosaeta (филум Halobacterota). Индикаторами застойных морских вод оказались микроорганизмы цикла серы. Это аноксигенные фототрофные бактерии класса Chlorobia (Chlorobium phaeovibrioides, Pelodictyon phaeoclathratiforme), это Chloroflexi рода Chloronema, несерные пурпурные бактерии, близкие к роду Rhodoferax, бесцветные серные бактерии семейства Beggiatoaceae, а также тионовые бактерии рода Thiobacillus. Археи рода Nitrosopumilus (филум Crenarchaeota), а также бактерии рода Woeseia могут считаться “анти-индикаторными” микроорганизмами, поскольку они обнаруживаются только в водах открытого моря. Мы полагаем, что при устойчивом обмене вод через морскую дамбу состав микробного сообщества вод залива Канда не будет существенно меняться и будет подвержен только сезонным и межгодовым колебаниям. При негативном развитии событий можно дать прогноз превращения залива Канда в стратифицированный водоем с аноксийным придонным водным слоем и сообществом микроорганизмов, сходным с меромиктическими водоемами.

Об авторах

А. С. Саввичев

Институт микробиологии им. С.Н. Виноградского, ФИЦ Биотехнологии РАН

Автор, ответственный за переписку.
Email: savvichev@mail.ru
Россия, 119071, Москва

Н. А. Демиденко

Институт океанологии им. П.П. Ширшова РАН

Email: savvichev@mail.ru
Россия, 117997, Москва

В. В. Кадников

Институт биоинженерии им. К.Г. Скрябина, ФИЦ Биотехнологии РАН

Email: savvichev@mail.ru
Россия, 119071, Москва

В. В. Беленкова

Институт микробиологии им. С.Н. Виноградского, ФИЦ Биотехнологии РАН

Email: savvichev@mail.ru
Россия, 119071, Москва

И. И. Русанов

Институт микробиологии им. С.Н. Виноградского, ФИЦ Биотехнологии РАН

Email: savvichev@mail.ru
Россия, 119071, Москва

В. М. Горленко

Институт микробиологии им. С.Н. Виноградского, ФИЦ Биотехнологии РАН

Email: savvichev@mail.ru
Россия, 119071, Москва

Список литературы

  1. Горленко В.М. Окисление тиосульфата Amoebobacter roseus в темноте в микроаэрофильных условиях // Микробиология. 1974. Т. 43. С. 729–731.
  2. Иванов Н.О., Китаев В.П., Чеченков А.В // Сборник научных трудов / АН СССР, Зоол. Ин-т, Секция по Белому морю Ихтиол. Комиссия. Гл. ред. О.А. Скарлато. – Л.: ЗИН, 1983. С. 37–44.
  3. Иванов М.В., Русанов И.И., Пименов Н.В., Байрамов И.Т., Юсупов С.К., Саввичев А.С., Леин А.Ю., Сапожников В.В. Микробные процессы цикла углерода и серы в озере Могильном // Микробиология. 2001. Т. 70. С. 675–686.
  4. Ivanov M.V., Rusanov I.I., Pimenov N.V., Bairamov I.T., Yusupov S.K., Savvichev A.S., Lein A.Yu., Sapozhnikov V.V. Microbial processes of the carbon and sulfur cycles in Lake Mogil’noe // Microbiology (Moscow). 2001. V. 70. P. 583‒593.
  5. Иванов М.В., Саввичев А.С., Клювиткин А.А., Чульцова А.Л., Захарова Е.Е., Русанов И.И., Леин А.Ю., Лисицын А.П. Возобновление сероводородного заражения глубоководных впадин Каспийского моря // ДАН. 2013. Т. 453. С. 76–81. https://doi.org/10.7868/S0869565213230187
  6. Ivanov M.V., Savvichev A.S., Klyuvitkin A.A., Chul’tsova A.L., Zakharova E.E., Rusanov I.I., Lein A.Yu., Lisitsyn A.P. Resumption of hydrogen sulfide contamination of the water column of deep basins in the Caspian Sea // Doklady Earth Sci. 2013. V. 453. P. 1094‒1099.
  7. Краснова Е.Д. Экология меромиктических озер России. 1. Прибрежные морские водоемы // Водные ресурсы. 2021. Т. 48. С. 322–333. https://doi.org/10.31857/S0321059621030093
  8. Krasnova E.D. Ecology of meromictic lakes of Russia. Coastal marine waterbodies // Water Resour. 2021. V. 48. P. 427–438.https://doi.org/10.1134/S009780782103009X
  9. Саввичев А.С., Русанов И.И., Захарова Е.Е., Веслополова Е.Ф., Мицкевич И.Н., Кравчишина М.Д., Леин А.Ю., Иванов М.В. Микробные процессы циклов углерода и серы в Белом море // Микробиология. 2008. Т. 77. С. 823–838.
  10. Savvichev A.S., Rusanov I.I., Zakharova E.E., Veslopolova E.F., Mitskevich I.N., Kravchishina M.D., Lein A.Yu., Ivanov M.V. Microbial processes of the carbon and sulfur cycles in the White Sea // Microbiology (Moscow). 2008. V. 77. P. 734–750.https://doi.org/10.1134/S002626170806012X
  11. Семенов В.Н. Систематика и экология морских бассейнов Севера на разных этапах изоляции. Апатиты: Изд-во ММБИ КФ АН СССР, 1988. 46 с.
  12. Bräuer S.L., Cadillo-Quiroz H., Ward R.J., Yavitt J.B., Zinder S.H. Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog // Int. J. Syst. Evol. Microbiol. 2011. V. 61. P. 45–52.
  13. Camacho A., Erez J., Chicote A., Florin M., Squires M.M., Lehmann C., Bahofen R. Microbial microstratification, inorganic carbon photoassimilation and dark carbon fixation at the chemocline of the meromictic Lake Cadagno (Switzerland) and its relevance to the food web // Aquat. Sci. 2001. V. 63. P. 91–106.https://doi.org/10.1007/PL00001346
  14. Dubinina G.A., Gorlenko V.M. New filamentous photosynthetic green bacteria containing gas vacuoles // Microbiology (Moscow). 1975. V. 44. P. 511–517.
  15. Dyrssen D.W., Hall P.O.J., Haraldsson C., Chierici M., Skei J., Ostlund H.G. Time dependence of organic matter decay and mixing processes in Framvaren, a permanently anoxic fiord in south Norway // Aquatic Geochem. 1996. V. 2. P. 111–129.
  16. Edgar R.C. Search and clustering orders of magnitude faster than BLAST // Bioinformatics. 2010. V. 26. P. 2460–2461. https://doi.org/10.1093/bioinformatics/btq461
  17. Garcia-Gil L.J., Vicente E., Camacho A., Borrego C.M., Vila X., Cristina X.P., Rodriguez-Gonzalez J. Vertical distribution of photosynthetic sulphur bacteria linked to saline gradients in Lake “El Tobar” (Cuenca, Spain) // Aquat. Microb. Ecol. 1999. V. 20. P. 299–303.
  18. Ghai R., Mizuno C.M., Picazo A., Camacho A., Rodriguez-Valera F. Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria // Sci. Rep. 2013. V. 3. P. 1–8. https://doi.org/10.1038/srep02471
  19. Gorlenko W.M., Kuznezov S.I. Über die photosynthesierenden Bakterien des Kononjer–Sees // Arch. Hydrobiol. 1972. V. 70. № 1. S. 1–13.
  20. Gorlenko V.M., Vainshtein M.B., Kachalkin V.I. Mikrobiological characteristic of Lake Mogilnoye // Arch. Hydrobiol. 1978. V. 81. P. 475–492.
  21. Gulati R.D., Zadereev T.S., Degermendzhi A.G. // Ecology of meromictic lakes / Eds. Gulati R.D., Zadereev T.S., Degermendzhi A.G. Springer International Publish, 2018. Ecol. Stud. V. 228. 405 p. https://doi.org/10.1007/978-3-319-49143-1
  22. Han Y., Perner M. The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines // Front. Microbiol. 2015. V. 6. Art. 989. https://doi.org/10.3389/fmicb.2015.00989
  23. Jørgensen B.B., Kuenen J.G., Cohen Y. Microbial transformations of sulfur-compounds in a stratified lake (Solar Lake, Sinai) // Limnol. Oceanogr. 1979. V. 24. P. 799–822.
  24. Kalyuzhnaya M.G., Bowerman S., Lara J.C., Lidstrom M.E., Chistoserdova L. Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae // Int. J. Syst. Evol. Microbiol. 2006. V. 56. P. 2819–2823. https://doi.org/10.1099/ijs.0.64191-0
  25. Kleindienst S., Ramette A., Amann R., Knittel K. Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments // Environ. Microbiol. 2012. V. 14. P. 2689–2710. https://doi.org/10.1111/j.1462-2920.2012.02832.x
  26. Könneke M., Bernhard A.E., De La Torre J.R., Walker C.B., Waterbury J.B., Stahl D.A. Isolation of an autotrophic ammonia-oxidizing marine archaeon // Nature. 2005. V. 437. P. 543–546. https://doi.org/10.1038/nature03911
  27. Krasnova E.D., Kharcheva A.V., Milyutina I.A., Voronov D.A, Patsaeva S.V. Study of microbial communities in redox zone of meromictic lakes isolated from the White Sea using spectral and molecular methods // J. Marine Biol. Assoc. UK. 2015. V. 95. P. 1–12. https://doi.org/10.1017/S0025315415000582
  28. Liu X., Li M., Castelle C.J., Probst A.J., Zhou Z., Pan J., Liu Y., Banfield J.F., Gu J.D. Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages // Microbiome. 2018. V. 6. P. 1–16. https://doi.org/10.1186/s40168-018-0488-2
  29. Losyuk G., Kokryatskaya N., Krasnova E. Formation of hydrogen sulfide in isolated basins at the Karelian of the White Sea coast // EARSeL eProc. 2015. V. 14. P. 49–54. https://doi.org/10.12760/02-2015-1-07
  30. Lunina O.N., Gorlenko V.M., Solov’eva O.A., Akimov V.N., Rusanov I.I., Pimenov N.V. Seasonal changes in the structure of the anoxygenic phototrophic bacterial community in Lake Mogilnoe, a relict lake on Kil’din Island in the Barents Sea // Microbiology (Moscow). 2005. V. 74. P. 588–596. https://doi.org/10.1007/s11021-005-0107-7
  31. Magoc T., Salzberg S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies // Bioinformatics. 2011. V. 27. P. 2957–2963. https://doi.org/10.1093/bioinformatics/btr507
  32. Middelburg J.J., Levin L.A. Coastal hypoxia and sediment biogeochemistry // Biogeosciences. 2009. V. 6. P. 1273–1293. https://doi.org/10.5194/bg-6-1273-2009
  33. Mori K., Iino T., Suzuki K., Yamaguchi K., Kamagata Y. Aceticlastic and NaCl-requiring methanogen “Methanosaeta pelagica” sp. nov., isolated from marine tidal flat sediment // A-ppl. Environ. Microbiol. 2012. V. 78. P. 3416–3423. https://doi.org/10.1128/AEM.07484-11
  34. Mori K., Yamaguchi K., Hanada S. Sulfurovum denitrificans sp. nov., an obligately chemolithoautotrophic sulfur-oxidizing epsilonproteobacterium isolated from a hydrothermal field // Int. J. Syst. Evol. Microbiol. 2018. V. 68. P. 2183–2187. https://doi.org/10.1099/ijsem.0.002803
  35. Murphy C.L., Biggerstaff J., Eichhorn A., Ewing E., Shahan R., Soriano D., Stewart S., VanMol K., Walker R., Walters P., Elshahed M.S., Youssef N.H. Genomic characterization of three novel Desulfobacterota classes expand the metabolic and phylogenetic diversity of the phylum // Environ. Microbiol. 2021. V. 23. P. 4326–4343. https://doi.org/10.1111/1462-2920.15614
  36. Narihiro T., Terada T., Ohashi A., Kamagata Y., Nakamura K., Sekiguchi Y. Quantitative detection of previously characterized syntrophic bacteria in anaerobic wastewater treatment systems by sequence-specific rRNA cleavage method // Water Res. 2012. V. 46. P. 2167–2175. https://doi.org/10.1016/j.watres.2012.01.034
  37. Oswald K., Graf J.S., Littmann S., Tienken D., Brand A., Wehrli B., Albertsen M., Daims H., Wagner M., Kuypers M.M., Schubert C.J., Milucka J. Crenothrix are major methane consumers in stratified lakes // ISME J. 2017. V. 11. P. 2124–2140. https://doi.org/10.1038/ismej.2017.77
  38. Overmann J. Mahoney Lake: a case study сообщающегося с морем of the ecological significance of phototrophic sulphur bacteria // Adv. Microb. Ecol. 1997. V. 15. P. 251–288.
  39. Park S.J., Kim J.G., Jung M.Y., Kim S.J., Cha I.T., Ghai R., Martín-Cuadrado A.B., Rodríguez-Valera F., Rhee S.K. Draft genome sequence of an ammonia–oxidizing archaeon, “Candidatus Nitrosopumilus sediminis” AR2, from Svalbard in the arctic circle // J. Bacteriol. 2012. V. 194. P. 6946–6947.
  40. Pimenov N.V., Bonch-Osmolovskaya E.A. In situ activity studies in thermal environments // Meth. Microbiol. 2006. V. 35. P. 29–53.
  41. Pjevac P., Korlevic M., Berg J.S., Bura-Nakic E., Ciglenecki I., Amann R., Orlic S. Community shift from phototrophic to chemotrophic sulfide oxidation following anoxic holomixis in a stratified seawater lake // Appl. Environ. Microbiol. 2015. V. 81. P. 298–308.https://doi.org/10.1128/AEM.02435-14
  42. Qin W., Heal K.R., Ramdasi R., Kobel J.N., Martens-Habbena W., Bertagnoll A.D., Amin S.A., Walker C.B., Urakawa H., Konneke M., Devol A.H., Moffett J.W., Armbrust E.V., Jensen G.J., Ingalls A.E., Stahl D.A. Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota // Int. J. Syst. Evol. Microbiol. 2017. V. 67. P. 5067–5079. https://doi.org/10.1099/ijsem.0.002416
  43. Rognes T., Flouri T., Nichols B., Quince C., Mahé F. VSEARCH: a versatile open source tool for metagenomics // Peer. J. 2016. V. 4. P. 1–22. https://doi.org/10.7717/peerj.2584
  44. Rogozin D.Y., Zykov V.V., Chernetsky M.Y., Degermendzhy A.G., Gulati R.D. Effect of winter conditions on distributions of anoxic phototrophic bacteria in two meromictic lakes in Siberia, Russia // Aquat. Ecol. 2009. V. 43. P. 661–672. https://doi.org/10.1007/s10452-009-9270-7
  45. Salman V., Bailey J.V., Teske A. Phylogenetic and morphologic complexity of giant sulphur bacteria // Antonie van Leeuwenhoek. 2013. V. 104. P. 169–186. https://doi.org/10.1007/s10482-013-9952-y
  46. Savvichev A.S., Demidenko N.A., Krasnova E.D., Kalmatskaya O.V., Kharcheva A.N., Ivanov M.V. Microbial processes in the Kanda Bay, a meromictic water body artifically separated from the White Sea // Doklady Biol. Sci. 2017. V. 474. P. 135–139. https://doi.org/10.1134/S0012496617030103
  47. Savvichev A.S., Babenko V.V., Lunina O.N., Letarova M.A., Boldyreva D.I., Veslopolova E.F., Demidenko N.A., Kokryatskaya N.M., Krasnova E.D., Gaisin V.A., Kostryukova E.S., Gorlenko V.M., Letarov A.V. Sharp water column stratification with an extremely dense microbial population in a small meromictic lake, Trekhtzvetnoe // Environ. Microbiol. 2018. V. 20. P. 3784−3797. https://doi.org/10.1111/1462-2920.14384
  48. Savvichev A.S., Kadnikov V.V., Rusanov I.I., Beletsky A.V., Krasnova E.D., Voronov D.A., Kallistova A.Yu., Veslopolova E.F., Zakharova E.E., Kokryatskaya N.M., Losyuk G.N., Demidenko N.A., Belyaev N.A., Sigalevich P.A., Mardanov A.V., Ravin N.V., Pimenov N.V. Microbial processes of the carbon and sulfur cycles and the relevant microorganisms in the water column of the meromictic lake Bol’shie Khruslomeny Lake at the White Sea coast // Front. Microbiol. 2020. V. 11. Art. 1945. P. 1–17. https://doi.org/10.3389/fmicb.2020.01945
  49. Strelkov P., Shunatova N., Fokin M., Usov N., Fedyuk M., Malavenda S., Lubina O., Poloskin A., Korsun S. Marine Lake Mogilnoe (Kildin Island, the Barents Sea): one hundred years of solitude // Polar Biol. 2014. V. 37. P. 297–310. https://doi.org/10.1007/s00300-013-1431-4
  50. Sun Q.L., Zhang J., Wang M.X., Cao L., Du Z.F., Sun Y.Y., Liu S.Q., Li C.L., Sun L. High-throughput sequencing reveals a potentially novel Sulfurovum species dominating the microbial communities of the seawater–sediment interface of a deep-sea cold seep in South China sea // Microorganisms. 2020. V. 8. P. 687. https://doi.org/10.3390/microorganisms8050687
  51. Tassi F., Fazi S., Rossetti S., Pratesi P., Ceccotti M., Cabassi J., Capecchiacci Fr., Venturi St., Vaselli O. The biogeochemical vertical structure renders a meromictic volcanic lake a trap for geogenic CO2 (Lake Averno, Italy) // PLoS One. 2018. V. 13. P. 1–26. https://doi.org/10.1371/journal.pone.0193914
  52. Van Gemerden H., Mas J. Ecology of phototrophic sulfur bacteria // Anoxygenic photosynthetic bacteria / Eds. Blankenship R.E., Madigan M.T., Bauer C.E. New York: Kluwer Academic, 1995. P. 49–85.
  53. Vekeman B., Kerckhof F.M., Cremers G., Vos P., Vandamme P., Boon N., Camp H.J.M., Heylen K. New Methyloceanibacter diversity from North Sea sediments includes methanotroph containing solely the soluble methane monooxygenase // Environ. Microbiol. 2016. V. 18. P. 4523–4536. https://doi.org/10.1111/1462-2920.13485
  54. Velinsky D.J., Fogel M.L. Cycling of dissolved and particulate nitrogen and carbon in the Framvaren Fjord, Norway: stable isotopic variations // Mar. Chem. 1999. V. 67. P. 161‒180.
  55. Zhang J., Gilbert D., Gooday A., Levin L., Naqvi S.W.A., Middelburg J.J., Scranton M., Ekau W., Peña A., Dewitte B., Oguz T., Monteiro P.M.S., Urban E., Rabalais N.N., Ittekkot V., Kemp W.M., Ulloa O., Elmgren R., Escobar-Brion E., Van der Plas A.K. Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development // Biogeosci. 2010. V. 7. P. 1443–1467.https://doi.org/10.5194/bg-7-1443-2010

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

3.

Скачать (528KB)

© А.С. Саввичев, Н.А. Демиденко, В.В. Кадников, В.В. Беленкова, И.И. Русанов, В.М. Горленко, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах