Altered Sensitivity to UV Light and Radiation in Bacillus Bacteria Exposed to a Hypomagnetic Field
- Authors: Fialkina S.V.1,2, Osipova P.D.1, Lebedev V.M.3, Spassky A.V.3, Yurov D.S.3, Poddubko S.V.1, Orlov O.I.1
-
Affiliations:
- State Scientific Center of the Russian Federation—Institute of Biomedical Problems
- National Research Center of Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya, Ministry of Healthcare of the Russian Federation
- Skobeltsyn Research Institute of Nuclear Physics, Moscow State University
- Issue: Vol 94, No 5 (2025)
- Pages: 437-446
- Section: EXPERIMENTAL ARTICLES
- URL: https://journals.rcsi.science/0026-3656/article/view/317085
- DOI: https://doi.org/10.7868/S3034546425050076
- ID: 317085
Cite item
Abstract
About the authors
S. V. Fialkina
State Scientific Center of the Russian Federation—Institute of Biomedical Problems; National Research Center of Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya, Ministry of Healthcare of the Russian Federation
Email: fialkina-fsv@mail.ru
Moscow, 123007, Russia; Moscow, 123098, Russia
P. D. Osipova
State Scientific Center of the Russian Federation—Institute of Biomedical ProblemsMoscow, 123007, Russia
V. M. Lebedev
Skobeltsyn Research Institute of Nuclear Physics, Moscow State UniversityMoscow, 119991, Russia
A. V. Spassky
Skobeltsyn Research Institute of Nuclear Physics, Moscow State UniversityMoscow, 119991, Russia
D. S. Yurov
Skobeltsyn Research Institute of Nuclear Physics, Moscow State UniversityMoscow, 119991, Russia
S. V. Poddubko
State Scientific Center of the Russian Federation—Institute of Biomedical ProblemsMoscow, 123007, Russia
O. I. Orlov
State Scientific Center of the Russian Federation—Institute of Biomedical ProblemsMoscow, 123007, Russia
References
- Карпов Д. С., Домашин А. И., Котлов М. И., Осипова П. Д., Киселева Т. А. Серегина С. В., Гончаренко А. В., Миронов А. С., Карпов В. Л., Поддубко С. В. Биотехнологический потенциал штамма Bacillus subtilis 20 // Мол. биология. 2020. T. 54. С. 137‒145.
- Орлов О. И., Гурьева Т. С., Дадашева О. А., Спасский А. В., Ездакова М. В., Литвин Е. Д., Сычев В. Н. Влияние условий ослабленного в 1000 раз магнитного поля Земли на эмбриогенез и онтогенез японского перепела в рядуп околений // Докл. Российской академии наук. Науки о жизни. 2020. T. 490. № 1. С. 94‒100.
- Фиалкина С. В., Осипова П. Д., Васин А. Л., Лебедев В. М., Спасский А. В., Буравков С. В., Поддубко С. В., Орлов О. И. Влияние гипомагнитного поля на характер роста и морфологию клеток бактерий рода Bacillus // Авиационная и экологическая медицина. 2024. Т. 58. № 5. С. 89‒99. https://doi.org/10.21687/0233-528X-2024-58-5-89-99
- Alken P., Thebault E., Beggan C., Amit H., Aubert J., Baerenzung J., Bondar T. N., Brown W. J., Califf S. International geomagnetic reference field: The thirteenth generation // Earth Planets Space. 2021. V. 73. Art. e197. https://doi.org/10.1186/s40623-020-01288-x
- Baek S., ChoiH., Park H. Effects of a hypomagnetic field on DNA methylation during the differentiation of embryonic stem cells // Sci. Rep. 2019. V. 9. Art. 1333. https://doi.org/10.1038/s41598-018-37372-2
- Berguig M. S., Hamoudi M., Lemouel J. L., Cohen Y. Validate global mapping of internal lunar magnetic field // Arab. J. Geosci. 2013. P. 1063–1072. https://doi.org/10.1007/s12517-011-0406-4
- Binhi V. N. Statistical amplification of the effects of weak magnetic fields in cellular translation // Cells. 2023. V. 12. Art. 724. https://doi.org/10.3390/cells12050724
- Creanga D., Poiata A., Morariu V., Tupu P. Zero-magnetic field effect in pathogen bacteria // J. Magn. Magnet. Mater. 2004. V. 272–276. P. 2442–2444. https://doi.org/10.1016/j.jmmm.2003.12.853
- Furukawa S., Nagamatsu A., Nenoi M., Fujimori A., Kakinuma S., Katsube T., Wang B., Tsuruoka C., Shirai T., Nakamura A. J., Sakaue-Sawano A., Miyawaki A., Harada H., Kobayashi M., Kobayashi J., Kunieda T., Funayama T., Suzuki M., Miyamoto T., Hidema J., Yoshida Y., Takahashi A. Space radiation biology for “Living in Space” // Biomed. Res. Int. 2020. V. 8. Art. e4703286. https://doi.org/10.1155/2020/4703286
- Gudoshnikov S. A., Venediktov S. N., Grebenshchikov Y. B., Kuznetsov P. A., Manninen S. A., Krivolapova O. N., Trukhanov K. A., Kruglov O. S., Spasskii A. V. A screening chamber for attenuating the Earth’s magnetic field based on roll magnetic materials // Measurement Techniques. 2012. V. 55. P. 329–335.
- Horneck G., Klaus D. M., Mancinelli R. L. Space microbiology // Microbiol. Mol. Biol. Rev. 2010. V. 74. Р. 121–156. https://doi.org/10.1128/MMBR.00016-09
- Livak K. J., Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method // Methods. 2001. V. 25. P. 402‒408. https://doi.org/10.1006/meth.2001.1262
- Maffei M. E. Magnetic field effects on plant growth, development, and evolution // Front. Plant Sci. 2014. Art. 445.
- Martino C. F., Castello P. R. Modulation of hydrogen peroxide production in cellular systems by low level magnetic fields // PLoS One. 2011. V. 6. Art 22753. https://doi.org/10.1371/journal.pone.0022753
- Mo W., Liu Y., Bartlett P. F., He R.-Q. Transcriptome profile of human neuroblastoma cells in the hypomagnetic field // Sci. China Life Sci. 2014. V. 57. P. 448–461. https://doi.org/0.1007/s11427-014-4644-z
- Mo W., Zhang Z., Wang D., Liu Y., Bartlett P. F., He R.-Q. Shielding of the geomagnetic field alters actin assembly and inhibits cell motility in human neuroblastoma cells // Sci. Rep. 2016. V. 6. Art. e22624. https://doi.org/10.1038/srep22624
- Mukherjee S., Bassler B. L. Bacterial quorum sensing in complex and dynamically changing environments // Nat. Rev. Microbiol. 2019. V. 17. Р. 371–382. https://doi.org/10.1038/s41579-019-0186-5
- Nagwani A. K., Budka A., Łacka A., Kaczmarek Ł., Kmita H. The effect ofhypomagneticfield on survival and mitochondrial functionality of active Paramacrobiotus experimentalis females and males of different age // Front. Physiol. 2023. V. 14. Art 1253483. https://doi.org/10.3389/fphys.2023.1253483
- Obhodas J., Valkovic V., Kollar R., Hrenović J., Nađ K., Vinković A., Orlić Ž. The growth and sporulation of Bacillus subtilis in nanotesla magnetic fields // Astrobiology. 2021.V. 21. P. 323‒331. https://doi.org/10.1089/ast.2020.2288
- Poiata A., Creanga D. E., Morariu V. V. Life in zero magnetic field. V. E. coli resistance to antibiotics // Electromagn. Biol. Med. 2009. V. 22. P. 171–182. https://doi.org/10.1081/JBC-120024626
- Ramsay J., Kattnig D. R. Radical triads, not pairs, may explain effects of hypomagnetic fields on neurogenesis // PLoS Comput. Biol. 2022. V. 18. Art. e1010519. https://doi.org/10.1371/journal.pcbi.1010519
- Roemer K., Mo W., Zhang Z., Liu Y., Bartlett P. F., He R.-Q. Magnetic shielding accelerates the proliferation of human neuroblastoma cell by promoting G1-phase progression // PLoS One. 2013. V. 8. Art. e54775. https://doi.org/10.1371/journal.pone.0054775
- Simonsen L. C., Slaba T. C., Guida P. Rusek A. NASA’s first ground-based Galactic Cosmic Ray Simulator: Enabling a new era in space radiobiology research // PLoS Biol. 2020. V. 18. Art. e3000669. https://doi.org/0.1371/journal.pbio.3000669
- Sincak M., Sedlakova-Kadukova J. Hypomagnetic fields and their multilevel effects on living organisms // Processes. 2023.V. 11. Art. e282. https://doi.org/10.3390/pr11010282
- Steinhilber F., Abreu J. A., Beer J., McCracken K.G. Interplanetary magnetic field during the past 9300 years inferred from cosmogenic radionuclides // J. Geophys. Res. Space. 2010. V. 115. № A1. Art. e01104. https://doi.org/10.1029/2009JA014193
- Tarduno J. A., Blackman E. G., Mamajek E. E. Detecting the oldest geodynamo and attendant shielding from the solar wind: Implications for habitability // Phys. Earth Planet. 2014. V. 233. № 8. Р. 68–87.
- Tian L., Luo Y., Ren J., Zhao C. The role of oxidative stress in hypomagnetic field effects // Antioxidants (Basel). 2024. V. 13. Art8. e1017. https://doi.org/10.3390/antiox13081017
- Watters T. R., McGovern P.J., Irwin R. P. Hemispheres apart: the crustal dichotomy on Mars // Annu. Rev. Earth Planet. Sci. 2007. V. 35. Р. 621–652. https://doi.org/10.1146/annurev.earth.35.031306.140220
- Xue X., Ali Y. F., Liu C., Hong Z., Luo W., Nie J., Li B., Jiao Y., Liu N.-A. Geomagnetic shielding enhances radiation resistance by promoting DNA repair process in human bronchial epithelial cells // Int. J. Mol. Sci. 2020. V. 21. Art. e304. https://doi.org/10.3390/ijms21239304
- Xue X., Ali Y. F., Luo W., Liu C., Zhou G., Liu N.-A. Biological effects of space hypomagnetic environment on circadian rhythm // Front. Physiol. 2021. V. 9. Art. e643943. https://doi.org/10.3389/fphys.2021.643943
- Yurov D. S., Alimov A. S., Ishkhanov B. S., Pakhomov N. I., Sakharov V. P., Shvedunov V. I. Industrial prototype of compact CW linac // Proceedings of RuPAC’2014. Obninsk, Russia. 2014. P. 248.
- Zhang B., Wang L., Zhan A., Wang M., Tian L., Guo W., Pan Y. Long-term exposure to a hypomagnetic field attenuates adult hippocampal neurogenesis and cognition // Nat. Commun. 2021. V. 12. Art. 1174. https://doi.org/10.1038/s41467-021-21468-x
- Zhang H. T., Zhang Z. J., Mo W. C., Hu P.-D., Ding H.-M., Liu Y., Hua Q., He R.-Q. Shielding of the geomagnetic field reduces hydrogen peroxide production in human neuroblastoma cell and inhibits the activity of CuZn superoxide dismutase // Protein Cell. 2017. V. 8. Р. 527–537. https://doi.org/10.1007/s13238-017-0403-9
Supplementary files
