Altered Sensitivity to UV Light and Radiation in Bacillus Bacteria Exposed to a Hypomagnetic Field

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The conducted work resulted in obtaining data on the modulating effect of the hypomagnetic field (HMF) when bacterial cells are exposed to ultraviolet or radiation. After exposure to physical stress factors, bacterial spores were restored in a hypomagnetic chamber (HMC), which allows weakening the Earth’s magnetic field by almost 1000 times. The obtained results demonstrate increased survival, formation of larger colonies on a nutrient medium when restoring cells under HMF conditions after exposure to ultraviolet or radiation. Consequently, there is a higher rate of growth and reproduction of the bacterial population under hypomagnetic conditions. At the molecular level, an increased level of expression of genes involved in DNA reparation and response to oxidative stress was observed, which can provide a higher rate of restoration of damage accumulated in bacterial cells after exposure to pulsed ultraviolet or radiation. It was found that under GMF conditions, genes of the non-homologous end joining (NHEJ) and excision repair (BER) repair systems, the antioxidant enzyme catalase were activated, but the expression of genes involved in the SOS response was reduced. Despite the fact that GMF itself did not have an obvious effect on the viability of bacterial cells, it clearly increased their ability to recover after exposure to ultraviolet or radiation. The presented results indicate the role of a hypomagnetic field as a modulator of stress responses in microorganisms, which is important for understanding the possibility of their survival and adaptation in extreme space conditions.

Sobre autores

S. Fialkina

State Scientific Center of the Russian Federation—Institute of Biomedical Problems; National Research Center of Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya, Ministry of Healthcare of the Russian Federation

Email: fialkina-fsv@mail.ru
Moscow, 123007, Russia; Moscow, 123098, Russia

P. Osipova

State Scientific Center of the Russian Federation—Institute of Biomedical Problems

Moscow, 123007, Russia

V. Lebedev

Skobeltsyn Research Institute of Nuclear Physics, Moscow State University

Moscow, 119991, Russia

A. Spassky

Skobeltsyn Research Institute of Nuclear Physics, Moscow State University

Moscow, 119991, Russia

D. Yurov

Skobeltsyn Research Institute of Nuclear Physics, Moscow State University

Moscow, 119991, Russia

S. Poddubko

State Scientific Center of the Russian Federation—Institute of Biomedical Problems

Moscow, 123007, Russia

O. Orlov

State Scientific Center of the Russian Federation—Institute of Biomedical Problems

Moscow, 123007, Russia

Bibliografia

  1. Карпов Д. С., Домашин А. И., Котлов М. И., Осипова П. Д., Киселева Т. А. Серегина С. В., Гончаренко А. В., Миронов А. С., Карпов В. Л., Поддубко С. В. Биотехнологический потенциал штамма Bacillus subtilis 20 // Мол. биология. 2020. T. 54. С. 137‒145.
  2. Орлов О. И., Гурьева Т. С., Дадашева О. А., Спасский А. В., Ездакова М. В., Литвин Е. Д., Сычев В. Н. Влияние условий ослабленного в 1000 раз магнитного поля Земли на эмбриогенез и онтогенез японского перепела в рядуп околений // Докл. Российской академии наук. Науки о жизни. 2020. T. 490. № 1. С. 94‒100.
  3. Фиалкина С. В., Осипова П. Д., Васин А. Л., Лебедев В. М., Спасский А. В., Буравков С. В., Поддубко С. В., Орлов О. И. Влияние гипомагнитного поля на характер роста и морфологию клеток бактерий рода Bacillus // Авиационная и экологическая медицина. 2024. Т. 58. № 5. С. 89‒99. https://doi.org/10.21687/0233-528X-2024-58-5-89-99
  4. Alken P., Thebault E., Beggan C., Amit H., Aubert J., Baerenzung J., Bondar T. N., Brown W. J., Califf S. International geomagnetic reference field: The thirteenth generation // Earth Planets Space. 2021. V. 73. Art. e197. https://doi.org/10.1186/s40623-020-01288-x
  5. Baek S., ChoiH., Park H. Effects of a hypomagnetic field on DNA methylation during the differentiation of embryonic stem cells // Sci. Rep. 2019. V. 9. Art. 1333. https://doi.org/10.1038/s41598-018-37372-2
  6. Berguig M. S., Hamoudi M., Lemouel J. L., Cohen Y. Validate global mapping of internal lunar magnetic field // Arab. J. Geosci. 2013. P. 1063–1072. https://doi.org/10.1007/s12517-011-0406-4
  7. Binhi V. N. Statistical amplification of the effects of weak magnetic fields in cellular translation // Cells. 2023. V. 12. Art. 724. https://doi.org/10.3390/cells12050724
  8. Creanga D., Poiata A., Morariu V., Tupu P. Zero-magnetic field effect in pathogen bacteria // J. Magn. Magnet. Mater. 2004. V. 272–276. P. 2442–2444. https://doi.org/10.1016/j.jmmm.2003.12.853
  9. Furukawa S., Nagamatsu A., Nenoi M., Fujimori A., Kakinuma S., Katsube T., Wang B., Tsuruoka C., Shirai T., Nakamura A. J., Sakaue-Sawano A., Miyawaki A., Harada H., Kobayashi M., Kobayashi J., Kunieda T., Funayama T., Suzuki M., Miyamoto T., Hidema J., Yoshida Y., Takahashi A. Space radiation biology for “Living in Space” // Biomed. Res. Int. 2020. V. 8. Art. e4703286. https://doi.org/10.1155/2020/4703286
  10. Gudoshnikov S. A., Venediktov S. N., Grebenshchikov Y. B., Kuznetsov P. A., Manninen S. A., Krivolapova O. N., Trukhanov K. A., Kruglov O. S., Spasskii A. V. A screening chamber for attenuating the Earth’s magnetic field based on roll magnetic materials // Measurement Techniques. 2012. V. 55. P. 329–335.
  11. Horneck G., Klaus D. M., Mancinelli R. L. Space microbiology // Microbiol. Mol. Biol. Rev. 2010. V. 74. Р. 121–156. https://doi.org/10.1128/MMBR.00016-09
  12. Livak K. J., Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method // Methods. 2001. V. 25. P. 402‒408. https://doi.org/10.1006/meth.2001.1262
  13. Maffei M. E. Magnetic field effects on plant growth, development, and evolution // Front. Plant Sci. 2014. Art. 445.
  14. Martino C. F., Castello P. R. Modulation of hydrogen peroxide production in cellular systems by low level magnetic fields // PLoS One. 2011. V. 6. Art 22753. https://doi.org/10.1371/journal.pone.0022753
  15. Mo W., Liu Y., Bartlett P. F., He R.-Q. Transcriptome profile of human neuroblastoma cells in the hypomagnetic field // Sci. China Life Sci. 2014. V. 57. P. 448–461. https://doi.org/0.1007/s11427-014-4644-z
  16. Mo W., Zhang Z., Wang D., Liu Y., Bartlett P. F., He R.-Q. Shielding of the geomagnetic field alters actin assembly and inhibits cell motility in human neuroblastoma cells // Sci. Rep. 2016. V. 6. Art. e22624. https://doi.org/10.1038/srep22624
  17. Mukherjee S., Bassler B. L. Bacterial quorum sensing in complex and dynamically changing environments // Nat. Rev. Microbiol. 2019. V. 17. Р. 371–382. https://doi.org/10.1038/s41579-019-0186-5
  18. Nagwani A. K., Budka A., Łacka A., Kaczmarek Ł., Kmita H. The effect ofhypomagneticfield on survival and mitochondrial functionality of active Paramacrobiotus experimentalis females and males of different age // Front. Physiol. 2023. V. 14. Art 1253483. https://doi.org/10.3389/fphys.2023.1253483
  19. Obhodas J., Valkovic V., Kollar R., Hrenović J., Nađ K., Vinković A., Orlić Ž. The growth and sporulation of Bacillus subtilis in nanotesla magnetic fields // Astrobiology. 2021.V. 21. P. 323‒331. https://doi.org/10.1089/ast.2020.2288
  20. Poiata A., Creanga D. E., Morariu V. V. Life in zero magnetic field. V. E. coli resistance to antibiotics // Electromagn. Biol. Med. 2009. V. 22. P. 171–182. https://doi.org/10.1081/JBC-120024626
  21. Ramsay J., Kattnig D. R. Radical triads, not pairs, may explain effects of hypomagnetic fields on neurogenesis // PLoS Comput. Biol. 2022. V. 18. Art. e1010519. https://doi.org/10.1371/journal.pcbi.1010519
  22. Roemer K., Mo W., Zhang Z., Liu Y., Bartlett P. F., He R.-Q. Magnetic shielding accelerates the proliferation of human neuroblastoma cell by promoting G1-phase progression // PLoS One. 2013. V. 8. Art. e54775. https://doi.org/10.1371/journal.pone.0054775
  23. Simonsen L. C., Slaba T. C., Guida P. Rusek A. NASA’s first ground-based Galactic Cosmic Ray Simulator: Enabling a new era in space radiobiology research // PLoS Biol. 2020. V. 18. Art. e3000669. https://doi.org/0.1371/journal.pbio.3000669
  24. Sincak M., Sedlakova-Kadukova J. Hypomagnetic fields and their multilevel effects on living organisms // Processes. 2023.V. 11. Art. e282. https://doi.org/10.3390/pr11010282
  25. Steinhilber F., Abreu J. A., Beer J., McCracken K.G. Interplanetary magnetic field during the past 9300 years inferred from cosmogenic radionuclides // J. Geophys. Res. Space. 2010. V. 115. № A1. Art. e01104. https://doi.org/10.1029/2009JA014193
  26. Tarduno J. A., Blackman E. G., Mamajek E. E. Detecting the oldest geodynamo and attendant shielding from the solar wind: Implications for habitability // Phys. Earth Planet. 2014. V. 233. № 8. Р. 68–87.
  27. Tian L., Luo Y., Ren J., Zhao C. The role of oxidative stress in hypomagnetic field effects // Antioxidants (Basel). 2024. V. 13. Art8. e1017. https://doi.org/10.3390/antiox13081017
  28. Watters T. R., McGovern P.J., Irwin R. P. Hemispheres apart: the crustal dichotomy on Mars // Annu. Rev. Earth Planet. Sci. 2007. V. 35. Р. 621–652. https://doi.org/10.1146/annurev.earth.35.031306.140220
  29. Xue X., Ali Y. F., Liu C., Hong Z., Luo W., Nie J., Li B., Jiao Y., Liu N.-A. Geomagnetic shielding enhances radiation resistance by promoting DNA repair process in human bronchial epithelial cells // Int. J. Mol. Sci. 2020. V. 21. Art. e304. https://doi.org/10.3390/ijms21239304
  30. Xue X., Ali Y. F., Luo W., Liu C., Zhou G., Liu N.-A. Biological effects of space hypomagnetic environment on circadian rhythm // Front. Physiol. 2021. V. 9. Art. e643943. https://doi.org/10.3389/fphys.2021.643943
  31. Yurov D. S., Alimov A. S., Ishkhanov B. S., Pakhomov N. I., Sakharov V. P., Shvedunov V. I. Industrial prototype of compact CW linac // Proceedings of RuPAC’2014. Obninsk, Russia. 2014. P. 248.
  32. Zhang B., Wang L., Zhan A., Wang M., Tian L., Guo W., Pan Y. Long-term exposure to a hypomagnetic field attenuates adult hippocampal neurogenesis and cognition // Nat. Commun. 2021. V. 12. Art. 1174. https://doi.org/10.1038/s41467-021-21468-x
  33. Zhang H. T., Zhang Z. J., Mo W. C., Hu P.-D., Ding H.-M., Liu Y., Hua Q., He R.-Q. Shielding of the geomagnetic field reduces hydrogen peroxide production in human neuroblastoma cell and inhibits the activity of CuZn superoxide dismutase // Protein Cell. 2017. V. 8. Р. 527–537. https://doi.org/10.1007/s13238-017-0403-9

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».