Characteristics of Psychrotolerant Bacteria Isolated from Clay Organogenic Deposits of Mramorny Cave (Primorsky Territory)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A cultivated community of bacteria of the genus Pseudomonas was researched in clayey organogenic deposits of the Mramorny Cave (Primorsky Territory). The bacterial strains studied in this work are eurythermal and psychrotolerant. Their phylogenetic affiliation was found by high throughput sequencing of 16S rRNA gene fragments. It is known that bacteria of the genus Pseudomonas represent all the Earth ecological niches and, accordingly, have a wide range of adaptive functions. Using microscopy methods, a change in the nature of mobility and the cell size stability with changes in the temperatures of cultivating bacteria were established. The studied strains are of scientific and practical interest due to the enzymatic activity detection to several substrates simultaneously at different temperatures (25 and 4℃), as well as the ability to secrete cold active pectinase, protease and lipase. However, phosphate-solubilizing activity both at 4 and at 25℃ became preferable for the strains. The Mramorny Cave is karst and is characterized by carbonate karst, which explains the preference for the studied strains in calcium phosphate. An analysis of the obtained data shows that the collection of cultivated bacteria obtained by us includes both typical psychrotolerant ones, which exhibit enzymatic activity under conditions of optimal growth temperature, and unique ones, capable of synthesizing a wide range of enzymes under conditions not characteristic of its optimum growth.

Full Text

Restricted Access

About the authors

D. A. Rusakova

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences; Far Eastern Federal University

Author for correspondence.
Email: sidorenko@biosoil.ru
Russian Federation, Vladivostok; Vladivostok

M. L. Sidorenko

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences

Email: sidorenko@biosoil.ru
Russian Federation, Vladivostok

A. V. Kim

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences; Far Eastern Federal University

Email: sidorenko@biosoil.ru
Russian Federation, Vladivostok; Vladivostok

References

  1. Берсенев Ю. И. Особо охраняемые природные территории Приморского края: существующие и проектируемые: монография. Владивосток: Изд-во Дальневост. федерал. ун-та. 2017. 202 с.
  2. Берсенев Ю. И. Пещеры Дальнего Востока и перспективы их использования // Пещеры. Проблемы изучения: Межвузовский сборник научных трудов / Перм. ун-т. Пермь. 1990. 156 с.
  3. Воробьёва С. В., Хижняк С. В., Харламова Л. Т. Влияние температуры на рост психрофильных бактерий, выделенных из пещер Дальнего Востока, Средней Сибири и Западного Кавказа // Вестник КрасГАУ. 2012. № 9. C. 117–121.
  4. Воротников А. В. Хемотаксис: движение, направление, управление // Успехи биологической химии. 2011. Т. 51. С. 335–400.
  5. Vorotnikov A. V. Chemotaxis: movement, direction, control // Biochemistry (Moscow). 2011. V. 76. № 13. P. 1528–1555. https://doi.org/10.1134/S0006297911130104
  6. Галимзянова Н. Ф., Гильванова Е. А., Рябова А. С., Гуватова З. Г., Кудрявцева А. В., Мелентьев А. И. Филогенетическое разнообразие прокариотов в микробных сообществах скальных поверхностей пещеры Шульган-Таш (Капова), Южный Урал // Экобиотех. 2020. Т. 3. С. 298–304. https://doi.org/10.31163/2618-964X-2020-3-3-298-304
  7. Глушакова А. М., Лысак Л. В., Качалкин А. В., Иванова А. Е., Умарова А. Б., Абрямян И. А., Ежелев З. С., Максимова И. А. Трансформация микробных комплексов в компонентах почвенных конструкций разного генезиса (почва, торф, песок) при процессах замораживания–оттаивания // Микробиология. 2021. Т. 90. С. 166–178. https://doi.org/10.31857/S002636562102004X
  8. Glushakova A. M., Lysak L. V., Kachalkin A. V., Ivanova A. E., Umarova A. B., Abramyan I. A., Ezhelev Z. S., Maksimova I. A. Transformation of microbial complexes in components of soil constructions of different origin (soil, peat, sand) during freezing-thawing processes // Microbiology (Moscow). 2021. V. 90. P. 176‒186.
  9. Кадырова Г. Х., Садуллаева М. С., Атаджанова Ш. Ш., Закирьяева С. И Фосфат-солюбилизирующая активность ризобактерий пшеницы (Triticum aestivum L.) // Universum: химия и биология: электрон. научн. журн. 2022. Т. 12. № 102. 6 с. https://doi.org/10.32743/UniChem.2022.102.12.14609
  10. Кондратьева Л. М., Полевская О. С., Голубева Е. М., Штарева А. В., Коновалова Н. С. Элементный состав грунтовых вод и спелеотемы “лунное молоко” в карстовой пещере Прощальная (Дальний Восток) // Литосфера. 2018. Т. 18. С. 928–941. https://doi.org/10.24930/1681-9004-2018-18-6-928-941
  11. Кузьмина Л. Ю., Галимзянова Н. Ф., Абдуллин Ш. Р., Рябова А. С. Микробиота пещеры Киндерлинская (Южный Урал) // Микробиология. 2012. Т. 81. С. 273–281.
  12. Kuzmina L. Y., Galimzianova N. F., Abdullin S. R., Ryabova A. S. Microbiota of the Kinderlinskaya cave (South Urals, Russia) // Microbiology (Moscow). 2012. V. 81. P. 251‒258.
  13. Кузьмина Л. Ю. Высоцкая Л. Б., Галимзянова Н. Ф., Гильванова Е. А., Рябова А. С., Мелентьев А. И. Новые штаммы фосфатмобилизующих бактерий, продуцирующие ауксин, перспективные для сельскохозяйственной биотехнологии // Известия УНЦ. 2015. № 1. C. 40–52.
  14. Нетрусов А. И., Егорова М. А., Захарчук Л. М. Практикум по микробиологии. — М.: Издательский центр “Академия”, 2005. 608 с.
  15. Определитель бактерий Берджи в 2 томах. Т. 2: Пер. с англ. / Под ред. Дж. Хоулта, Н. Крига, П. Снита, Дж. Стейли, С. Уилльямса. М.: Мир, 1997. 368 с.
  16. Рязанцева Л. Т. Ферменты-антиоксиданты: структурно-функциональные свойства и роль в регулировании метаболических процессов // Вестн. Воронежского гос. техн. ун-та. 2011. Т. 7. № 2. С. 126–129.
  17. Сидоренко М. Л., Русакова Д. А. Разнообразие психрофильных бактерий и их биотехнологический потенциал // Вестн. Том. гос. ун-та. Биология. 2022. № 58. С. 28–54. https://doi.org/10.17223/19988591/58/2
  18. Фирсова М. С., Евграфова В. А., Потехин А. В. Подбор питательной среды и оптимизация режима глубинного культивирования Avibacterium paragallinarum // Ветеринария сегодня. 2019. Т. 2. № 29. С. 12–16. https://doi.org/10.29326/2304-196Х-2019-2-29-12-16
  19. Цыганов И. В., Нестерова Л. Ю., Ткаченко А. Г. Скольжение бактерий: способ пассивного распространения без использования жгутиков и пилей // Вестник ПГУ. Биология. 2021. № 4. С. 263–274.
  20. Щербаков А. В., Щербакова Е. Н., Мулина С. А., Роц П. Ю., Дарью Р. Ф., Кипрушкина Е. И., Гончар Л. Н., Чеботарь В. К. Психрофильные псевдомонады-эндофиты как потенциальные агенты в биоконтроле фитопатогенных и гнилостных микроорганизмов при холодильном хранении картофеля // Сельскохозяйственная биология. 2017. Т. 52. № 1. С. 116–128. https://doi.org/10.15389/agrobiology.2017.1.116rus
  21. Andersen S. M., Johnsen K., Sоrensen J., Nielsen P., Jacobsen C. S. Pseudomonas frederiksbergensis sp. nov., isolated from soil at a coal gasification site // Int. J. Syst. Evol. Microbiol. 2000. V. 50. Р. 1957–1964. https://doi.org/10.1099/00207713-50-6-1957
  22. Altschul S. F., Madden T. L., Schaffer A. A. Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI–BLAST: a new generation of protein database search programs // Nucleic Acids Res. 1997. V. 25. P. 3389–3402. https://doi.org/10.1093/nar/25.17.3389
  23. Belimov A. A., Dodd I. C., Safronova V. I., Hontzeas N., Davies W. J. Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato // J. Exp. Botany. 2007. V. 58. Р. 1485–1495. https://doi.org/10.1093/jxb/erm010
  24. Bogdan D. F., Baricz A. I., Chiciudean I., Bulzu P. A., Cristea A., Nastase-Bucur R., Levei E. A., Cadar O., Sitar C., Banciu H. L., Moldovan O. T. Diversity, distribution and organic substrates preferences of microbial communities of a low anthropic activity cave in North-Western Romania // Front. Microbiol. 2023. V. 14. P. 962452. https://doi.org/10.3389/fmicb.2023.962452
  25. Bao C., Li M., Zhao X., Shi J., Liu Y., Zhang N., Zhou Y., Ma J., Chen G., Zhang S., Chen H. Mining of key genes for cold adaptation from Pseudomonas fragi D12 and analysis of its cold-adaptation mechanism // Front. Microbiol. 2023. V. 14. Art. 1215837. Р. 1–15. https://doi.org/10.3389/fmicb.2023.1215837
  26. Busquets A., Mulet M., Gomila M., Garcia-Valdes E. Pseudomonas lalucatii sp. nov. isolated from Vallgornera, a karstic cave in Mallorca, Western Mediterranean // Syst. Appl. Microbiol. 2021. V. 44. P. 126205. https://doi.org/10.1016/j.syapm.2021.126205
  27. Campos V. L., Valenzuela C., Yarza P., Kаmpfer P., Vidal R., Zaror C., Mondaca M. A. Lopez-Lopez A., Rossellо-Mоra R. Pseudomonas arsenicoxydans sp nov., an arsenite-oxidizing strain isolated from the Atacama desert // Syst. Appl. Microbiol. 2010. V. 33. Р. 193–197. https://doi.org/10.1016/j.syapm.2010.02.007
  28. Chatterjee P., Samaddar S., Anandham R., Kang Y., Kim K., Selvakumar G, Sa T. Beneficial soil bacterium Pseudomonas frederiksbergensis OS261 augments salt tolerance and promotes red pepper plant growth // Front. Plant Sci. 2017. V. 8. Art. 705. https://doi.org/10.3389/fpls.2017.00705
  29. Hebraud M., Dubois E., Potier P., Labadie J. Effect of growth temperatures on the protein levels in a psychrotrophic bacterium, Pseudomonas fragi // J. Bacteriol. 1994. V. 176. Р. 4017–4024.
  30. DangThu Q., Jang S. H., Lee C. Biochemical comparison of two glucose 6-phosphate dehydrogenase isozymes from a cold-adapted Pseudomonas mandelii // Extremophiles: life under extreme conditions. 2020. V. 24. Р. 501–509. https://doi.org/10.1007/s00792-020-01171-3
  31. Delorme S., Lemanceau P., Christen R. Pseudomonas lini sp. nov., a novel species from bulk and rhizospheric soils // Int. J. Syst. Evol. Microbiol. 2002. V. 52. Р. 513–523.
  32. Ghosh S., Kuisiene N., Cheeptham N. The cave microbiome as a source for drug discovery: Reality or pipe dream? // Biochem. Pharmacol. 2017. V. 134. Р. 18–34. https://doi.org/10.1016/j.bcp.2016.11.018
  33. Ghosh S., Kam G., Nijjer M., Stenner C, Cheeptham N. Culture dependent analysis of bacterial diversity in Canada’s Raspberry Rising Cave revealed antimicrobial properties // Int. J. Speleol. 2020. V. 49. Р. 43–53. https://doi.org/10.5038/18 27-806X.49.1.2291
  34. Jaroszewicz W., Bielanska P., Lubomska D., Kosznik-Kwasnicka K., Golec P.; Grabowski L., Wieczerzak E. Drozdz W., Gaffke L., Pierzynowska K. Wegrzyn G., Wegrzyn A. Antibacterial, antifungal and anticancer activities of compounds produced by newly isolated Streptomyces strains from the Szczelina Chochołowska Cave (Tatra Mountains, Poland) // Antibiotics. 2021. V. 10. Р. 1212. https://doi.org/10.3390/antibiotics10101212
  35. Kosznik-Kwaаnicka K., Golec P., Jaroszewicz W., Lubomska D., Piechowicz L. Into the unknown: microbial communities in caves, their role, and potential use // Microorganisms. 2022. V. 10. P. 222. https://doi.org/10.3390/microorganisms10020222
  36. Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets // Mol. Biol. Evol. 2016. V. 33. P. 1870–1874. https://doi.org/10.1093/molbev/msw054
  37. Laiz L., Gonzalez-Delvalle M., Hermosin B., Ortiz-Martinez A. Saiz-Jimenez C. Isolation of cave bacteria and substrate utilization at different temperatures // Geomicrobiol. J. 2003. V. 20. Р. 479–489. https://doi.org/10.1080/713851125
  38. Lopes da Silva T., Moniz P., Silva C., Reis A. The dark side of microalgae biotechnology: a heterotrophic biorefinery platform directed to ω-3 rich lipid production // Microorganisms. 2019. V. 7. Р. 670. https://doi.org/10.3390/microorganisms7120670
  39. Lujаn A. M., Gоmez P., Buckling A. Siderophore cooperation of the bacterium Pseudomonas fluorescens in soil // Biology Lett. 2015. V. 11. Р. 20140934. https://doi.org/10.1098/rsbl.2014.0934
  40. Majorina M. A., Veselova V. R., Melnik B. S. The influence of Pseudomonas syringae on water freezing and ice melting // PLoS One. 2022. V. 17. Р. e0265683. https://doi.org/10.1371/journal.pone.0265683
  41. Meng L., Zhang Y., Liu H., Zhao S., Wang J., Zheng N. Characterization of Pseudomonas spp. and associated proteolytic properties in raw milk stored at low temperatures // Front. Microbiol. 2017. Р. 2158. https://doi.org/10.3389/fmicb.2017.02158
  42. McBride M. J. Bacterial gliding motility: multiple mechanisms for cell movement over surfaces // Annu. Rev. Microbiol. 2001. V. 55. Р. 49–75.
  43. Molina L., Segura A., Duque E., Ramos J. L. The versatility of Pseudomonas putida in the rhizosphere environment // Adv. Appl. Microbiol. 2020. V. 110. Р. 149–180. https://doi.org/10.1016/bs.aambs.2019.12.002
  44. Nicole S. C., Lucca V. C., Leonardo P. M., Gustavo M. T., Ulisses B. A., Luis E. A. Marques L., Leopoldo S.M, Admilton G. O., Paulo R. C.S., Berenice M. T. Potential of cave isolated bacteria in self-healing of cement-based materials // J. Building Engin. 2022. V. 45. P. 103551. https://doi.org/10.1016/j.jobe.2021.103551
  45. Pabai F., Kermasha S., Morin A. Lipase from Pseudomonas fragi CRDA 323: partial purification, characterization and interesterification of butter fat // Appl. Microbiol. Biotechnol. 1995. V. 43. Р. 42–51. https://doi.org/10.1007/BF00170621
  46. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. Nucleic acid homologies in the genus Pseudomonas // Int. J. Syst. Bacteriol. 1973. V. 23. P. 333–339. https://doi.org/10.1099/00207713-23-4-333
  47. Ramani K., Chockalingam E., Sekaran G. Production of a novel extracellular acidic lipase from Pseudomonas gessardii using slaughterhouse waste as a substrate // J. Ind. Microbiol. Biotechnol. 2010. V. 37. P. 531–535. https://doi.org/10.1007/s10295-010-0700-1
  48. Roy K., Dey S., Uddin M. K., Barua R., Hossain M. T. Extracellular pectinase from a novel bacterium Chryseobacterium indologenes strain SD and its application in fruit juice clarification // Enzyme Res. 2018. V. 2018. P. 3859752. https://doi.org/10.1155/2018/3859752.
  49. Ryan M., Meiman J. An examination of short-term variations in water quality at a karst spring in Kentucky // Ground Water. 1996. V. 34. P. 23–30. https://doi.org/10.1111/j.1745-6584.1996.tb01861.x
  50. Sandhya V., Shrivastava M., Ali S. Z., Sai Shiva Krishna Prasad V. Endophytes from maize with plant growth promotion and biocontrol activity under drought stress // Russ. Agricult. Sci. 2017. V. 43. Р. 22–34. https://doi.org/10.3103/S1068367417010165
  51. Shehata T. E., Marr A. G. Effect of temperature on the size of Escherichia coli cells // J. Bacteriol. 1975. V. 124. Р. 857–862. https://doi.org/10.1128/jb.124.2.857-862.1975
  52. Zachow C., Müller H., Monk J., Berg G. Complete genome sequence of Pseudomonas brassicacearum strain L13–6–12, a biological control agent from the rhizosphere of potato // Stand. Genom. Sci. 2017. V. 12. № 6. Р. 1–7. https://doi.org/10.1186/s40793-016-0215-1
  53. Zhu H. Z., Zhang Z. F., Zhou N., Jiang C. Y., Wang B. J., Cai L., Wang H. M., Liu S. J. Bacteria and metabolic potential in karst caves revealed by intensive bacterial cultivation and genome assembly // Appl. Environ. Microbiol. 2021. V. 87. Р. e02440–20. https://doi.org/10.1128/AEM.02440-20

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Phylogenetic tree constructed on the basis of sequence analysis of 16S rRNA gene fragments of bacterial strains isolated from organogenic sediments of Marble Cave, showing their position among the representatives of the genus Pseudomonas. The dendrogram was constructed based on the nearest neighbor (NJ) algorithm. The scale corresponds to two nucleotide substitutions for every 100 bp. The bootstrap support values above 50% are presented

Download (394KB)
3. Fig. 2. Cell morphology of strain MP4 at 25℃ (a) and 4℃ (b). Scale bars are 5 μm (a) and 4℃ (b). Scale bars are 5 μm

Download (451KB)
4. Fig. 3. Growth curves of representatives of psychrotrophic culture of Pseudomonas sp. MR17 (a) and eurythermal culture of Pseudomonas sp. MR16 (b) at the investigated temperatures

Download (472KB)
5. Fig. 4. Range of values of specific growth rate (a) and cell biomass increment (b) for all tested strains at different temperatures

Download (258KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies