Molecular Genetic and Functional Analysis of the Rap-Phr Signal System of the Plasmid pBS72 of Bacillus subtilis Isolates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract

The functional characteristics of the Rap-Phr quorum sensing signal system of the plasmid pBS72 were investigated. Phylogenetic relationship was revealed between Rap phosphatase coded by the plasmid pBS72 and the homologous polypeptides RapP and RapI determined by the plasmid pBS32 (68.4% identity) and the ICEBs1 conjugative transposon (36.9% identity). Similar to the phylogenetically related phosphatases, the studied Rap protein had a negative effect on sporulation. Unlike the known signal systems, Rap-Phr proteins were found to affect the viability of plasmid-bearing donor bacteria in the course of conjugative transfer of the plasmid pBS72 in the isogenic system. Impaired rap-phr genes resulted in a 10-fold decrease in the number of viable donor cells with the mutant plasmid after 3 and 4 h, and in a 100-fold decrease after 24 h. The number of formed transconjugants remained almost the same. Our results provide the basis for investigation of the mechanisms responsible for the effect of extrachromosomal genetic elements on the donor bacteria, providing for the propagation of the pBS72-like plasmids in natural environments.

About the authors

A. S. Gurinovich

Department of Microbiology, Belarusian State University

Author for correspondence.
Email: m_titok@bsu.by
Belarus, 220030, Minsk

M. A. Titok

Department of Microbiology, Belarusian State University

Author for correspondence.
Email: nastia.gurinovich96@gmail.com
Belarus, 220030, Minsk

References

  1. Гуринович А.С., Титок М.А. Молекулярно-генетический и функциональный анализ плазмиды pBS72 природных бактерий Bacillus subtilis // Микробиология. 2020. Т. 89. С. 646‒657.https://doi.org/10.31857/S0026365620060063
  2. Gurinovich A.S., Titok M.A. Molecular genetic and functional analysis of the pBS72 plasmid from Bacillus subtilis environmental isolates // Microbiology (Moscow). 2020. V. 89. P. 660–669.https://doi.org/10.1134/S0026261720060065
  3. Гуринович А.С., Титок М.А. Молекулярно-генетический и функциональный анализ системы конъюгации плазмиды pBS72 природных бактерий Bacillus subtilis // Microbiology (Moscow). 2022. V. 91. P. 451–465. https://doi.org/10.31857/S0026365622300188
  4. Gurinovich A.S., Titok M.A. Molecular genetic and functional analysis of the conjugation system of the pBS72 plasmid from Bacillus subtilis environmental isolates // Microbiology (Moscow). 2022. V. 91. № 4. P. 395–408.https://doi.org/10.1134/S002626172230018X
  5. Baker M.D., Neiditch M.B. Structural basis of response regulator inhibition by a bacterial anti-activator protein // PLoS Biol. 2011. V. 9. Art. e1001226. https://doi.org/10.1371/journal.pbio.1001226
  6. Beauregard P.B., Chai Y., Vlamakis H., Losick R., Kolter R. Bacillus subtilis biofilm induction by plant polysaccharides // Proc. Natl. Acad. Sci. USA. 2013. V. 110. P. 1621–1630. https://doi.org/10.1073/pnas.1218984110
  7. Belas R. When the swimming gets tough, the tough form a biofilm // Mol. Microbiol. 2013. V. 90. P. 1–5. https://doi.org/10.1111/mmi.12354
  8. Bendori S.O., Pollak S., Hizi D., Eldar A. The RapP‒PhrP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapP // J. Bacteriol. 2015. V. 197. P. 592–602.https://doi.org/10.1128/JB.02382-14
  9. Boguslawski K.M., Hill P.A., Griffith K.L. Novel mechanisms of controlling the activities of the transcription factors Spo0A and ComA by the plasmid-encoded quorum sensing regulators Rap60‒Phr60 in Bacillus subtilis // Mol. Microbiol. 2015. V. 96. P. 325–348. https://doi.org/10.1111/mmi.12939
  10. Branda S.S., Chu F., Kearns D.B., Losick R., Kolter R. A major protein component of the Bacillus subtilis biofilm matrix // Mol. Microbiol. 2006. V. 59. P. 1229–1238. https://doi.org/10.1111/j.1365-2958.2005.05020x
  11. Bullock W.O., Fernandez J.M., Short J.M. XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection // BioTechniques. 1987. V. 5. P. 376–378.
  12. Burton A.T., Kearns D.B. The large pBS32/pLS32 plasmid of ancestral Bacillus subtilis // J. Bacteriol. 2020. V. 202. Art. e00290-20.https://doi.org/10.1128/JB.00290-20
  13. Comella N., Grossman A.D. Conservation of genes and processes controlled by the quorum response in bacteria: characterization of genes controlled by the quorum-sensing transcription factor ComA in Bacillus subtilis // Mol. Microbiol. 2005. V. 57. P. 1159–1174. https://doi.org/10.1111/j.1365-2958.2005.04749x
  14. Erez Z., Steinberger-Levy I., Shamir M., Doron S., Stokar-Avihail A., Peleg Y., Melamed S., Leavitt A., Savidor A., Albeck S., Amitai G., Sorek R. Communication between viruses guides lysis-lysogeny decisions // Nature. 2017. V. 541. P. 488–493. https://doi.org/10.1038/nature21049
  15. Even-Tov E., Bendori S.O., Pollak S., Eldar A. Transient duplication dependent divergence and horizontal transfer underlie the evolutionary dynamics of bacterial cell–cell signaling // PLoS Biol. 2016. V. 14. Art. e2000330.https://doi.org/10.1371/journal.pbio.2000330
  16. Gallegos-Monterrosa R., Christensen M.N., Barchewitz T., Koppenhofer S., Priyadarshini B., Balint B., Maroti G., Kempen P.J., Dragos A., Kovacs A.T. Impact of Rap‒Phr system abundance on adaptation of Bacillus subtilis // Commun. Biol. 2021. V. 4. P. 468. https://doi.org/10.1038/s42003-021-01983-9
  17. Gastelum G., de la Torre M., Rocha J. Rap protein paralogs of Bacillus thuringiensis: a multifunctional and redundant regulatory repertoire for the control of collective functions // J. Bacteriol. 2020. V. 202. Art. e00747-19. https://doi.org/10.1128/JB.00747-19
  18. Gonzalez-Pastor J.E., Hobbs E.C., Losick R. Cannibalism by sporulating bacteria // Science (New York, N.Y.). 2003. V. 301. P. 510–513. https://doi.org/10.1126/science.1086462
  19. Harwood C.R., Mouillon J.M., Pohl S., Arnau J. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group // FEMS Microbiol. Rev. 2018. V. 42. P. 721–738.https://doi.org/10.1093/femsre/fuy028
  20. Lopez D., Vlamakis H., Losick R., Kolter R. Cannibalism enhances biofilm development in Bacillus subtilis // Mol. Microbiol. 2009. V. 74. P. 609–618.https://doi.org/10.1111/j.1365-2958.2009.06882.x
  21. Mirouze N., Dubnau D. Chance and necessity in Bacillus subtilis development // Microbiol. Spectrum. 2013. V. 1. Art. TBS-0004-2012. https://doi.org/10.1128/microbiolspectrum.TBS-0004-2012
  22. Molecular Biological Methods for Bacillus / Eds. Harwood C.R., Cutting S.M. N.Y.: Chichester, 1991. P. 75–174.
  23. Neiditch M.B., Capodagli G.C., Prehna G., Federle M.J. Genetic and structural analyses of RRNPP intercellular peptide signaling of gram-positive bacteria // Annu. Rev. Genet. 2017. V. 51. P. 311–333.https://doi.org/10.1146/annurev-genet-120116-023507
  24. Parashar V., Konkol M.A., Kearns D.B., Neiditch M.B. A plasmid-encoded phosphatase regulates Bacillus subtilis biofilm architecture, sporulation, and genetic competence // J. Bacteriol. 2013. V. 195. P. 2437–2448.https://doi.org/10.1128/JB.02030-12
  25. Parashar V., Mirouze N., Dubnau D.A., Neiditch M.B. Structural basis of response regulator dephosphorylation by Rap phosphatases // PLoS Biol. 2011. V. 9. Art. e1000589.https://doi.org/10.1371/journal.pbio.1000589
  26. Rosch T.C., Golman W., Hucklesby L., Gonzalez-Pastor J.E., Graumann P.L. The presence of conjugative plasmid pLS20 affects global transcription of its Bacillus subtilis host and confers beneficial stress resistance to cells // Appl. Environ. Microbiol. 2014. V. 80. P. 1349–1358.https://doi.org/10.1128/AEM.03154-13
  27. Sambrook J., Fritsch E., Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed. / Eds. Sambrook J., Fritsch E., Maniatis T. N.Y., Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1989. 468 p.
  28. Serra C.R., Earl A.M., Barbosa T.M., Kolter R., Henriques A.O. Sporulation during growth in a gut isolate of Bacillus subtilis // J. Bacteriol. 2014. V. 196. P. 4184–4196. https://doi.org/10.1128/JB.01993-14
  29. Singh P.K., Ramachandran G., Duran-Alcalde L., Alonso C., Wu L.J., Meijer W.J. Inhibition of Bacillus subtilis natural competence by a native, conjugative plasmid-encoded comK repressor protein // Environ. Microbiol. 2012. V. 14. P. 2812–2825.https://doi.org/10.1111/j.1462-2920.2012.02819x
  30. Singh P.K., Ramachandran G., Ramos-Ruiz R., Peiro-Pastor R., Abia D., Wu L.J., Meijer W.J. Mobility of the native Bacillus subtilis conjugative plasmid pLS20 is regulated by intercellular signaling // PLoS Genet. 2013. V. 9. Art. e1003892.https://doi.org/10.1371/journal.pgen.1003892
  31. te Riele H., Michel B., Ehrlich S.D. Single-stranded plasmid DNA in Bacillus subtilis and Staphylococcus aureus // Proc. Natl. Acad. Sci. USA. 1986. V. 83. P. 2541–2545.https://doi.org/10.1073/pnas.83.8.2541
  32. Verhamme D.T., Kiley T.B., Stanley-Wall N.R. DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis // Mol. Microbiol. 2007. V. 65. P. 554–568.https://doi.org/10.1111/j.1365-2958.2007.05810x

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (84KB)
3.

Download (64KB)
4.

Download (624KB)
5.

Download (138KB)

Copyright (c) 2023 А.С. Гуринович, М.А. Титок

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies