Effect of the AZOBR_p60123 Plasmid Gene, Encoding the Wzt Protein, on Lipopolysaccharide Synthesis and Biofilm Formation in the Bacterium Azospirillum baldaniorum Sp245

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract

Inactivation of one of the genes (CDS AZOBR_p60123) of the ABC transporter ATP-binding protein Wzt in the p60123::aphAI mutant of Azospirillum baldaniorum Sp245 and the introduction of an additional copy of this gene into the parent or mutant strain affected the chain-length heterogeneity of O polysaccharides (OPSs) and lipopolysaccharides (LPSs), the OPS and LPS immunochemical characteristics, and the strain properties related to polysaccharide production (biofilm construction). Biofilms of the p60123::aphAI mutant Sp245.4-1-1 accumulated two times less biomass than those of Sp245. Introduction of pRK415-p60123 into the cells of Sp245.4-1-1 or Sp245 resulted in a respective increase or decrease in the ability of the resulting derivative strains to accumulate biofilm biomass, as compared with the original strains.

About the authors

L. P. Petrova

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Center,
Russian Academy of Sciences

Author for correspondence.
Email: petrova_lp@mail.ru
Russia, 410049, Saratov

S. S. Evstigneeva

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Center,
Russian Academy of Sciences

Email: shel71@yandex.ru
Russia, 410049, Saratov

Y. A. Filip’echeva

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Center,
Russian Academy of Sciences

Email: shel71@yandex.ru
Russia, 410049, Saratov

I. V. Volokhina

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Center,
Russian Academy of Sciences

Email: shel71@yandex.ru
Russia, 410049, Saratov

G. L. Burygin

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Center,
Russian Academy of Sciences

Email: shel71@yandex.ru
Russia, 410049, Saratov

L. Y. Matora

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Center,
Russian Academy of Sciences

Email: shel71@yandex.ru
Russia, 410049, Saratov

A. V. Shelud’ko

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Center,
Russian Academy of Sciences

Author for correspondence.
Email: shel71@yandex.ru
Russia, 410049, Saratov

References

  1. Евстигнеева С.С., Сигида Е.Н., Федоненко Ю.П., Коннова С.А., Игнатов В.В. Структурные особенности капсульных и О-полисахаридов бактерий Azospirillum brasilense Sp245 при изменении условий культивирования // Микробиология. 2016. Т. 85. С. 643‒651. https://doi.org/10.7868/S0026365616060094
  2. Yevstigneyeva S.S., Sigida E.N., Fedonenko Y.P., Konnova S.A., Ignatov V.V. Structural properties of capsular and O-specific polysaccharides of Azospirillum brasilense Sp245 under varying cultivation conditions // Microbiology (Moscow). 2016. V. 85. P. 664–671. https://doi.org/10.1134/S0026261716060096
  3. Матора Л.Ю., Шварцбурд Б.И., Щеголев С.Ю. Иммунохимический анализ О-специфических полисахаридов почвенных азотфиксирующих бактерий Azospirillum brasilense // Микробиология. 1998. Т. 67. С. 815–820.
  4. Matora L.Yu., Shvartsburd B.I., Shchegolev S.Yu. Immunochemical analysis of O-specific polysaccharides from the soil nitrogen-fixing bacteria Azospirillum brasilense // Microbiology (Moscow). 1998. V. 67. P. 677–681.
  5. Матора Л.Ю., Щеголев С.Ю. Антигенная идентичность липополисахаридов, капсулы и экзополисахаридов Azospirillum brasilense // Микробиология. 2002. Т. 71. С. 211–214.
  6. Matora L.Y., Shchegolev S.Y. Antigenic identity of the capsule lipopolysaccharides, exopolysaccharides, and O-specific polysaccharides in Azospirillum brasilense // Microbiology (Moscow). 2002. V. 71. P. 178–181. https://doi.org/10.1023/A:1015146104397
  7. Петрова Л.П., Прилипов А.Г., Кацы Е.И. Выявление предполагаемых генов биосинтеза полисахаридов у штаммов Azospirillum brasilense из серогрупп I и II // Генетика. 2017. Т. 53. С. 31–42. https://doi.org/10.7868/S0016675816110102
  8. Petrova L.P., Prilipov A.G., Katsy E.I. Detection of putative polysaccharide biosynthesis genes in Azospirillum brasilense strains from serogroups I and II // Russ. J. Genet. 2017. V. 53. P. 39–48. https://doi.org/10.1134/S1022795416110107
  9. Шелудько А.В., Кулибякина О.В., Широков А.А., Петрова Л.П., Матора Л.Ю., Кацы Е.И. Влияние мутаций в синтезе липополисахаридов и полисахаридов, связывающих калькофлуор, на формирование биопленок Azospirillum brasilense // Микробиология. 2008. Т. 77. С. 358–363.
  10. Sheludko A.V., Kulibyakina O.V., Shirokov A.A., Petrova L.P., Matora L.Yu., Katsy E.I. The effect of mutations affecting synthesis of lipopolysaccharides and calcofluor-binding polysaccharides on biofilm formation by Azospirillum brasilense // Microbiology (Moscow). 2008. V. 77. P. 313–317. https://doi.org/10.1134/S0026261708030107
  11. Шелудько А.В., Филипьечева Ю.А., Телешева Е.М. Буров А.М., Евстигнеева С.С., Бурыгин Г.Л., Петрова Л.П. Характеристика углеводсодержащих компонентов биопленок Azospirillum brasilense Sp245 // Микробиология. 2018. Т. 87. С. 483–494. https://doi.org/10.1134/S0026365618050166
  12. Shelud’ko A.V., Filip’echeva Y.A., Telesheva E.M., Burov A.M., Evstigneeva S.S., Burygin G.L., Petrova L.P. Characterization of carbohydrate-containing components of Azospirillum brasilense Sp245 biofilms // Microbiology (Moscow). 2018. V. 87. P. 610–620. https://doi.org/10.1134/S0026261718050156
  13. Шелудько А.В., Филипьечева Ю.А., Шумилова Е.М., Хлебцов Б.Н., Буров А.М., Петрова Л.П., Кацы Е.И. Изменения в формировании биопленок у flhB1 мутанта бактерии Azospirillum brasilense Sp245, лишенного жгутиков // Микробиология. 2015. Т. 84. С. 175–183. https://doi.org/10.7868/s0026365615010127
  14. Shelud’ko A.V., Filip’echeva Y.A., Shumilova E.M., Khlebtsov B.N., Burov A.M., Petrova L.P., Katsy E.I. Changes in biofilm formation in the nonflagellated flhB1 mutant of Azospirillum brasilense Sp245 // Microbiology (Moscow). 2015. V. 84. P. 144–151. https://doi.org/10.1134/S0026261715010129
  15. Федоненко Ю.П., Здоровенко Э.Л., Коннова С.А. Игнатов В.В., Шляхтин Г.В. Сравнительная характеристика липополисахаридов и О-специфических полисахаридов Azospirillum brasilense Sp245 и его омегон-Km мутантов KM018 и KM252 // Микробиология. 2004. Т. 73. С. 180–187.
  16. Fedonenko Yu.P., Zdorovenko E.L., Konnova S.A., Ignatov V.V., Shlyakhtin G.V. A comparison of the lipopolysaccharides and O-specific polysaccharides of Azospirillum brasilense Sp245 and its Omegon-Km mutants KM018 and KM252 // Microbiology (Moscow). 2004. V. 73. P. 143–149.
  17. Atabek A., Camesano T.A. Atomic force microscopy study of the effect of lipopolysaccharides and extracellular polymers on adhesion of Pseudomonas aeruginosa // J. Bacteriol. 2007. V. 18 . P. 8503‒8509. https://doi.org/10.1128/JB.00769-07
  18. Camesano T.A., Abu-Lail N.I. Heterogeneity in bacterial surface polysaccharides, probed on a single-molecule basis // Biomacromolecules. 2002. V. 3. P. 661–667. https://doi.org/10.1021/bm015648y
  19. Döbereiner J., Day J.M. Associative symbiosis in tropical grass: characterization of microorganisms and dinitrogen fixing sites // Symposium on Nitrogen Fixation / Ed. Newton W.E., Nijmans C.J. Pullman: Washington State University Press, 1976. P. 518–538. https://doi.org/10.12691/aees-4-4-1
  20. Dos Santos Ferreira N., Sant’Anna F.H., Reis V.M., et al. Genome-based reclassification of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. nov. // Int. J. Syst. Evol. Microbiol. 2020. V. 70. https://doi.org/10.1099/ijsem.0.004517
  21. Fedonenko Y.P., Zatonsky G.V., Konnova S.A. Zdorovenko E.L., Ignatov V.V. Structure of the O-specific polysaccharide of the lipopolysaccharide of Azospirillum brasilense Sp245 // Carbohydr. Res. 2002. V. 337. P. 869–872. https://doi.org/10.1016/s0008-6215(02)00061-7
  22. Figurski D.H., Helinski D.R. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans // Proc. Natl. Acad. Sci. USA. 1979 V. 76. P. 1648–1652. https://doi.org/10.1073/pnas.76.4.1648
  23. Hendriksen N.B. Microbial biostimulants – the need for clarification in EU regulation // Trends Microbiol. 2022. V. 30. P. 311‒313. https://doi.org/10.1016/j.tim.2022.01.008
  24. Hitchcock P.J., Brown T.M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels // J. Bacteriol. 1983. V. 154. P. 269‒277. https://doi.org/10.1128/jb.154.1.269-277.1983
  25. Hoang T.T., Karkhoff-Schweizer R.R., Kutchma A.J., Sc-hweizer H.P. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants // Gene. 1998. V. 212. P. 77–86. https://doi.org/10.1016/s0378-1119(98)00130-9
  26. Holguin G., Glick B.R. Expression of the ACC deaminase gene from Enterobacter cloacae UW4 in Azospirillum brasilense // Microb. Ecol. 2001. V. 41. P. 281–288. https://doi.org/10.1007/s002480000040
  27. Jucker B.A., Harms H., Hug S.J., Zehnder A.J.B. Adsorption of bacterial surface polysaccharides on mineral oxides is mediated by hydrogen bonds // Colloids Surf. B Biointerfaces. 1997. V. 9. P. 331–343. https://doi.org/10.1016/S0927-7765(97)00038-6
  28. Katzy E.I., Matora L.Y., Serebrennikova O.B., Scheludko A.V. Involvement of a 120-MDa plasmid of Azospirillum brasilense Sp245 in production of lipopolysaccharides // Plasmid. 1998. V. 40. P. 73–83. https://doi.org/10.1006/plas.1998.1353
  29. Keen N.T., Tamaki S., Kobayashi D., Trollinger D. Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria // Gene. 1980. V. 70. P. 191–197. https://doi.org/10.1016/0378-1119(88)90117-5
  30. Kumar S., Rai A.K., Mishra M.N., Shukla M., Singh P.K., Tripathi A.K. RpoH2 sigma factor controls the photooxidative stress response in a nonphotosynthetic rhizobacterium, Azospirillum brasilense Sp7 // Microbiology (SGM). 2012. V. 158. P. 2891–2902. https://doi.org/10.1099/mic.0.062380-0
  31. Lerner A., Okon Y., Burdman S. The wzm gene located on the pRhico plasmid of Azospirillum brasilense Sp7 is involved in lipopolysaccharide synthesis // Microbiology (SGM). 2009. V. 155. P. 791–804. https://doi.org/10.1099/mic.0.021824-0
  32. Liston S.D., Mann E., Whitfield C. Glycolipid substrates for ABC transporters required for the assembly of bacterial cell-envelope and cell-surface glycoconjugates // Biochim. Biophys. Acta. 2017. V. 1862. P. 1394–1403. https://doi.org/10.1016/j.bbalip.2016.10.008
  33. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT Method // Methods. 2001. V. 25. P. 402–408. https://doi.org/10.1006/meth.2001.1262
  34. Nakao R., Senpuku H., Watanabe H. Porphyromonas gingivalis galE is involved in lipopolysaccharide O-antigen synthesis and biofilm formation // Infect. Immun. 2006. V. 74. P. 6145–6153. https://doi.org/10.1128/IAI.00261-06
  35. Ouchterlony O., Nilsson L.A. Immunodiffusion and immunoelectrophoresis // Handbook of Experimental Immunology / Ed. Weiz D.M. Oxford: Alden Press, 1979. V. 1. P. 19–33.
  36. Petrova L.P., Yevstigneeva S.S., Borisov I.V., Shelud’ko A.V., Burygin G.L, Katsy E.I. Plasmid gene AZOBR_p60126 impacts biosynthesis of lipopolysaccharide II and swarming motility in Azospirillum brasilense Sp245 // J. Basic Microbiol. 2020 V. 60. P. 613–623. https://doi.org/10.1002/jobm.201900635
  37. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd edn. N.Y.: Cold Spring Harbor Laboratory, 1989.
  38. Valvano M.A., Furlong S.E., Patel K.B. Genetics, biosynthesis and assembly of O-antigen // Bacterial Lipopolysaccharides: Structure, Chemical Synthesis, Biogenesis and Interaction with Host Cells / Eds. Knirel Y.A., Valvano M.A. Wien: Springer, 2011. P. 275–310. https://doi.org/10.1016/j.carres.2003.07.009
  39. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers // Gene. 1982. V. 19. P. 259–268. https://doi.org/10.1016/0378-1119(82)90015-4
  40. Wisniewski-Dyé F., Borziak K., Khalsa-Moyers G., et al. Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments // PLoS Genet. 2011. V. 7. P. e1002430. https://doi.org/10.1371/journal.pgen.1002430
  41. Zdorovenko E.L., Shashkov A.S., Zhurina M.V., Plakunov V.K., Knirel Y.A. Structure of the O-specific polysaccharides from planktonic and biofilm cultures of Pseudomonas chlororaphis 449 // Carbohydr. Res. 2015. V. 404. P. 93‒97. https://doi.org/10.1016/j.carres.2014.10.020

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (628KB)
3.

Download (132KB)
4.

Download (268KB)

Copyright (c) 2023 Л.П. Петрова, С.С. Евстигнеева, Ю.А. Филипьечева, И.В. Волохина, Г.Л. Бурыгин, Л.Ю. Матора, А.В. Шелудько

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies