Search for Novel Halophilic and Halotolerant Producers of Antimicrobial Compounds in Various Extreme Ecosystems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract

The recent increase of antibiotic resistance in pathogenic microorganisms stimulated interest in the search for new antimicrobial compounds and their producers. Among the latter, halophilic microorganisms are considered to be the most promising group, since actinomycetes, producers of the majority of the known clinically important classes of antibiotics, are widely represented in this group. The present work reports the results of the search with three different approaches for new antimicrobial compounds in halophilic and halotolerant microorganisms inhabiting three different types of extreme ecosystems. Metagenomic analysis of microbial communities of subsurface thermal mineral waters revealed biosynthetic clusters of putative antimicrobial compounds, which belong to bacteria and archaea of uncultured lineages. Enrichment cultures with antimicrobial activity were obtained from the cold, deep oceanic sediments; analysis of their phylogenetic diversity resulted in identification of the potential producers of antimicrobial compounds as the members of class Desulfuromonadia. Finally, antimicrobial activity of a new species of soil natronophilic streptomycetes, Streptomyces sp. ACA25, was characterized; it was active only against gram-positive bacteria. The genome of this organism was sequenced, and the pathways for biosynthesis of polypeptide, polyketide, and beta-lactam antibiotics were identified. Active fractions of the ACA25 culture, containing antimicrobial compounds of polyketide and beta-lactam nature, were obtained. The active polyketide was identified as rosamycin, an antibiotic of the macrolide structural group. However, the fact that it did not inhibit bacterial translation highlighted structural differences between the new polyketide and rosamycin.

About the authors

S. N. Gavrilov

Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences

Author for correspondence.
Email: sngavrilov@gmail.com
Russia, 119071, Moscow

E. A. Bonch-Osmolovskaya

Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences; Faculty of Biology, Moscow State University

Email: sngavrilov@gmail.com
Russia, 119071, Moscow; Russia, 119234, Moscow

A. Yu. Merkel

Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences

Email: sngavrilov@gmail.com
Russia, 119071, Moscow

T. Haertle

Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement

Email: sngavrilov@gmail.com
France, 44316, Nantes

A. A. Nikandrova

Faculty of Biology, Moscow State University; Koltech Center of Life Science

Email: sngavrilov@gmail.com
Russia, 119234, Moscow; Russia, 121205, Moscow

D. A. Lukianov

Faculty of Chemistry, Moscow State University; Koltech Center of Life Science

Email: sngavrilov@gmail.com
Russia, 119234, Moscow; Russia, 121205, Moscow

O. V. Tresvyatskii

Faculty of Biology, Moscow State University

Email: sngavrilov@gmail.com
Russia, 119234, Moscow

M. I. Prokofeva

Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences

Email: sngavrilov@gmail.com
Russia, 119071, Moscow

T. A. Cherdyntseva

Faculty of Biology, Moscow State University

Email: sngavrilov@gmail.com
Russia, 119234, Moscow

A. S. Barashkova

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: sngavrilov@gmail.com
Russia, 117997, Moscow

E. A. Rogozhin

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; All-Russian Institute of Plant Protection

Email: sngavrilov@gmail.com
Russia, 117997, Moscow; Russia, 196608, St.-Petersburg-Pushkin

References

  1. Абрамов В.Ю., Вавичкин А.Ю. Особенности формирования термогазохимического состава минеральных вод Ессентукского месторождения // Разведка и охрана недр. 2010. № 10. С. 27‒32.
  2. Гаврилов С.Н., Потапов Е.Г., Прокофьева М.И., Клюкина А.А., Меркель А.Ю., Маслов А.А., Заварзина Д.Г. Разнообразие новых некультивируемых прокариот в микробных сообществах минеральных подземных вод Ессентукского месторождения // Микробиология. 2022. Т. 91. С. 32‒49.
  3. Gavrilov S.N., Potapov E.G., Prokof’eva M.I., Klyukina A.A., Merkel A.Y., Maslov A.A., Zavarzina D.G. Diversity of novel uncultured prokaryotes in microbial communities of the Yessentukskoye underground mineral water deposit // Microbiology (Moscow). 2022. V. 91. P. 28‒44.
  4. Лапчинская О.А., Катруха Г.С., Гладких Е.Г., Куляева В.В., Кудан П.В., Топольян А.П., Алфёрова В.А., Погожева В.В., Суконников М.А., Рогожин Е.А., Прохоренко И.А., Брылёв В.А., Королёв А.М., Слюндина М.С., Борисов Р.С., Серебрякова М.В., Шувалов М.В., Ксенофонтов А.Л., Стоянова Л.Г., Остерман И.А., Формановский А.А., Ташлицкий В.Н., Баратова Л.А., Тимофеева А.В., Тюрин А.П. Исследование антибиотического комплекса ИНА-5812 // Биоорганическая химия. 2016. Т. 42. С. 732‒740.
  5. Al-Dhabi N.A., Esmail G.A., Duraipandiyan V., Arasu M.V., Salem-Bekhit M.M. Isolation, identification and screening of antimicrobial thermophilic Streptomyces sp. Al-Dhabi-1 isolated from Tharban hot spring, Saudi Arabia // Extremophiles. 2016. V. 20. P. 79‒90.
  6. Alkhalili N., Canback B. Identification of putative novel class-I lanthipeptides in Firmicutes: a combinatorial in silico analysis approach performed on genome sequenced bacteria and a close inspection of Z-geobacillin lanthipeptide biosynthesis gene cluster of the thermophilic Geobacillus sp. strain ZGt-1 // Int. J. Mol. Sci. 2018. V. 19. P. 2650.
  7. Al-Shaibani M.M., Radin Mohamed R.M.S., Sidik N.M., Enshasy H.A.E., Al-Gheethi A., Noman E., Al-Mekhlafi N.A., Zin N.M. Biodiversity of secondary metabolites compounds isolated from phylum Actinobacteria and its therapeutic applications // Molecules. 2021. V. 26. P. 4504.
  8. Arnison P.G., Bibb M.J., Bierbaum G., Bowers A.A., Bugni T.S., Bulaj G., Camarero J.A., Campopiano D.J., Challis G.L. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature // Nat. Prod. Rep. 2013. V. 30. P. 108‒160.
  9. Besse A., Peduzzi J., Rebuffat S., Carré-Mlouka A. Antimicrobial peptides and proteins in the face of extremes: Lessons from archaeocins // Biochimie. 2015. V. 118. Art. 344e355.
  10. Birbir M., Eryilmaz S., Ogan A. Prevention of halophilic microbial damage on brine cured hides by extremely halophilic halocin producer strains // J. Soc. Leather Technol. Chem. 2004. V. 88. P. 99–104.
  11. Birbir M., Calli B., Mertoglu B., Bardavid R.E., Oren A., Ogmen M.N., Ogan A. Extremely halophilic Archaea from Tuz Lake, Turkey, and the adjacent Kaldirim and Kayacik salterns // World J. Microbiol. Biotechnol. 2007. V. 23. P. 309–316.
  12. Blin K., Shaw S., Kloosterman A.M., Charlop-Powers Z., van Weezel G.P., Medema M.H., Weber T. antiSMASH 6.0: improving cluster detection and comparison capabilities // Nucl. Acids Res. 2021. V. 49(W1). P. W29‒W35.
  13. Bonade A., Murelli F., Vescovo M., Scolari G., Bonade A. Partial characterization of a bacteriocin produced by Lactobacillus helveticus // Lett. Appl. Microbiol. 2001. V. 33 P. 153–158.
  14. Butler M.S., Blaskovich M.A., Owen J.G., Cooper M.A. Old dogs and new tricks in antimicrobial discovery // Curr. Opin. Microbiol. 2016. V. 33. P. 25‒34.
  15. Butler M.S., Blaskovich M.A., Cooper M.A. Antibiotics in the clinical pipeline at the end of 2015 // J. Antibiot. (Tokyo). 2017. V. 70. P. 3–24.
  16. de Castro A.P., Gabriel da R. Fernandes G.R., Franco O.L. Insights into novel antimicrobial compounds and antibiotic resistance genes from soil metagenomes // Front. Microbiol. 2014. e 00489.
  17. Cheng Y.Q., Tang G.L., Shen B. Identification and localization of the gene cluster encoding biosynthesis of the antitumor macrolactam leinamycin in Streptomyces atroolivaceus S-140 // J. Bacteriol. 2002. V. 184. P. 7013‒7024.
  18. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100. Wayne. PA: Clinical and Laboratory Standards Institute, 2020.
  19. Coker J.A. Extremophiles and biotechnology: current uses and prospects // F1000Res. 2016. V. 5: F1000 Faculty Rev-396. PMC4806705.
  20. Dietera A., Hamm A., Fiedler H., Goodfellow M., Muller W. et al. Pyrocoll, an antibiotic, antiparasitic and antitumor compound produced a novel alkaliphilic Streptomyces strain // J. Antibiot. (Tokyo). 2003. V. 56. P. 639–646.
  21. Garg N., Tang W., Goto Y., Nair S.K., Donk W.A. Van Der. Lantibiotics from Geobacillus thermodenitrificans // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 5241–5246.
  22. Hancock R.E.W., Chapple D.S. Peptide antibiotics // Antimicr. Agents Chemother. 1999. V. 43. P. 1317–1323.
  23. Hofer U. The cost of antimicrobial resistance // Nat. Rev. Microbiol. 2019. V. 17. s41579-018-0125-x
  24. Horwood P.F., Burgess G.W., Oakey H.J. Evidence for nonribosomal peptide synthetase production of cereulide (the emetic toxin) in Bacillus cereus // FEMS Microbiol. Lett. 2004. V. 236. P. 319‒324.
  25. Khomyakova M.A., Zavarzina D.G., Merkel A.Y., Klyukina A.A., Pikhtereva V.A., Gavrilov S.N., Slobodkin A.I. The first cultivated representatives of the actinobacterial lineage OPB41 isolated from subsurface environments constitute a novel order Anaerosomatales // Front. Microbiol. 2022. V. 13. Art. 1047580.
  26. Kodani S., Hudson M.E., Durrant M.C., Buttner M.J., Nodwell J.R., Willey J.M. et al. The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor // Proc. Natl. Acad. Sci. USA. 2004. V. 101. P. 11448‒11453.
  27. Leclerc H., Costa M.S. Microbiology of natural mineral waters // Technology of Bottled Water. 2nd ed. / Eds. Senior D., Dege N. Blackwell, 2005. P. 325–387.
  28. Mantravadi P.K., Kalesh K.A., Dobson R.C.J., Hudson A.O. The quest for novel antimicrobial compounds: emerging trends in research, development, and technologies // Antibiotics. 2019. V. 8. P. 8.
  29. McClerren A.L., Cooper L.E., Quan C., Thomas P.M., Kelleher N.L. et al. Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 17243–17248.
  30. Merkel A.Y., Chernyh N.A., Pimenov N.V., Elizaveta A., Bonch-Osmolovskaya E.A., Slobodkin A.I. Diversity and metabolic potential of the terrestrial mud volcano microbial community with a high abundance of Archaea mediating the anaerobic oxidation of methane // Life. 2021. V. 11. P. 953.
  31. Mullis M.M., Rambo I.M., Baker B.J., Reese B.K. et al. Diversity, ecology, and prevalence of antimicrobials in nature // Front. Microbiol. 2019. Art. e02518.
  32. Murray C.J.L. Ikuta K.S., Sharara F., Swetschinski L., Aguilar G.R., Gray A., Han C. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis // Lancet. 2022. V. 399. P. 629–655.
  33. Novotny J.F., Perry J.J., Carolina N. Characterization of bacteriocins from two strains of Bacillus thermoleovorans, a thermophilic hydrocarbon-utilizing species // Appl. Environ. Microbiol. 1992. V. 58. P. 2393–2396.
  34. Orelle C., Carlson S., Kaushal B., Almutairi M.M., Liu H., Ochabowicz A., Quan S., Pham V.C., Squires C.L., Murphy B.T., Mankin A.S. Tools for characterizing bacterial protein synthesis inhibitors // Antimicrob. Agents Chemother. 2013. V. 57. P. 5994‒6004.
  35. Osterman I.A., Komarova E.S., Shiryaev D.I., Korniltsev I.A., Khven I.M., Lukyanov D.A., Tashlitsky V.N., Serebryakova M.V., Efremenkova O.V., Ivanenkov Y.A., Bogdanov A.A., Sergiev P.V., Dontsova O.A. Sorting out antibiotics’ mechanisms of action: a double fluorescent protein reporter for high-throughput screening of ribosome and DNA biosynthesis inhibitors // Antimicrob. Agents Chemother. 2016. V. 60. P. 7481–7489.
  36. Parker E.N., Cain B.N., Hajian B., Ulrich R.J., Geddes E.J., Barkho S., Lee H.Y., Williams J.D., Raynor M., Caridha D., Zaino A., Shekhar M., Muñoz K.A., Rzasa K.M., Emily R. Temple E.R., Hunt D., Jin X., Vuong C., Pannone K., Kelly A.M., Mulligan M.P., Lee K.K., Lau G.W., Hung D.T., Hergenrother P.J. An iterative approach guides discovery of the FabI inhibitor fabimycin, a late-stage antibiotic candidate with in vivo efficacy against drug-resistant gram-negative infections // ACS Cent. Sci. 2022. V. 8. P. 1145–1158.
  37. Pathom-Aree W., Stach J.E., Ward A.C., Horikoshi K., Bull A.T., Goodfellow M. Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench // Extremophiles. 2006. V. 10. P. 181‒189.
  38. Procópio R.E., Silva I.R., Martins M.K., Azevedo J.L., Araújo J.M. Antibiotics produced by Streptomyces // Braz. J. Infect. Dis. 2012. V. 16. P. 466‒471.
  39. Rfimann H., Jaret R.S. Structure of rosamicin, a new macrolide from Micromonospora rosaria // J. Chem. Soc. Chem. Commun. 1972. P. 1270.
  40. Quinn G.A., Banat A.M., Abdelhameed A.M., Banat I.M. Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery // J. Med. Microbiol. 2020. V. 69. P. 1040‒1048.
  41. Ravel J., Wellington E.M., Hill R.T. Interspecific transfer of Streptomyces giant linear plasmids in sterile amended soil microcosms // Appl. Environ. Microbiol. 2000. V. 66. P. 529‒534.
  42. Sorokin D.Y., Kolganova T.V., Khijniak T.V., Jones B.E., Kublanov I.V. Diversity of cultivated aerobic poly-hydrolytic bacteria in saline alkaline soils // Peer J. 2017. e3796.
  43. Svetlov M.S., Kommer A., Kolb V.A., Spirin A.S. Effective cotranslational folding of firefly luciferase without chaperones of the Hsp70 family // Protein Sci. V. 15. P. 242–247.
  44. Tatusova T., DiCuccio M., Badretdin A., Chetvernin V., Nawrocki E.P., Zaslavsky L., Lomsadze A., Pruitt K.D., Borodovsky M., Ostell J. NCBI Prokaryotic genome annotation pipeline // Nucleic Acids Res. 2016. V. 44. P. 6614‒6624.
  45. Terra L., Dyson P.J., Hitchings M.D., Thomas L., Abdelhameed A. et al. A novel alkaliphilic Streptomyces inhibits ESKAPE pathogens // Front. Microbiol. 2018. V. 9. e2458.
  46. Quadri I., Hassani I.I., l’Haridon S., Chalopin M., Hacène H., Jebbar M. Characterization and antimicrobial potential of extremely halophilic archaea isolated from hypersaline environments of the Algerian Sahara // Microbiol. Res. 2016. V. 186–187. P. 119‒131.
  47. Waitz J.A., Drube C.G., Moss E.L., Weinstein M.J. Biological studies with rosamicin, a new Micromonospora-produced macrolide antibiotic // J. Antibiotics. 1972. V. 25. P. 647‒652.
  48. Watve M.G., Tickoo R., Jog M.M., Bhole B.D. How many antibiotics are produced by the genus Streptomyces? // Arch. Microbiol. 2001. V. 176. P. 386‒390.
  49. Wick R.R., Judd L. M., Gorrie C.L., Holt K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads // PLoS Comput. Biol. 2017. e1005595.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (301KB)
3.

Download (234KB)

Copyright (c) 2023 С.Н. Гаврилов, А.С. Барашкова, Т.А. Чердынцева, М.И. Прокофьева, О.В. Тресвятский, Д.А. Лукьянов, А.А. Никандрова, Т. Эртле, А.Ю. Меркель, Е.А. Бонч-Осмоловская, Е.А. Рогожин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies