Microbial Destruction of Polypropylene and Polyvinylchloride Samples under the Anaerobic Conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract—The most advantageous characteristic of the materials made of synthetic polymers, such as their resistance to biodegradation, is simultaneously the reason for their accumulation and environmental pollution. Nevertheless, some type of plastics under aerobic conditions undergo slow microbial degradation, however, there is lack of information on the anaerobic degradation of plastics. In this work, we studied the growth of anaerobic moderately thermophilic (55°C) consortiums in the presence of samples made of polypropylene (PP) and polyvinyl chloride (PVC). It was shown that the microbial biomass increased compared to the control, as well as anaerobic decomposition products (CO2, H2, and H2S) were detected, and the total weight of the plastics decreased by 4.4% (PP) and 6.5% (PVC) compared to the control. Bacterial cells adhere and form colonies and biofilms on the surface of the plastic materials. An analysis of the composition of microbial communities showed an increased number of anaerobic hydrolytics of the genus Tepidimicrobium, potential syntrophic bacteria of the genus Tepidanaerobacter, and especially sulfate-reducing bacteria (Desulfohalotomaculum). With help of differential scanning calorimetry and Fourier spectroscopy it was revealed that the decrease in the mass of plastic mainly occurred due to the hydrolysis of additives (plasticizers). The role of such microbial communities in the aquatic environment and anaerobic layers of the municipal solid waste landfills, where PP and PVC plastics can be destructed under the elevated temperatures of anaerobic conditions, is discussed.

About the authors

D. V. Malakhova

Department of Microbiology, Biological Faculty, Lomonosov Moscow State University

Email: tsavkelova@mail.ru
Russia, 119234, Moscow

M. A. Egorova

Department of Microbiology, Biological Faculty, Lomonosov Moscow State University

Email: tsavkelova@mail.ru
Russia, 119234, Moscow

M. R. Leontieva

Department of Microbiology, Biological Faculty, Lomonosov Moscow State University

Email: tsavkelova@mail.ru
Russia, 119234, Moscow

A. G. Elcheninov

Federal Research Centre “Fundamentals of Biotechnology,” Russian Academy of Sciences

Email: tsavkelova@mail.ru
Russia, 119071, Moscow

T. V. Panova

Department of Polymer Science, Faculty of Chemistry, Lomonosov Moscow State University

Email: tsavkelova@mail.ru
Russia, 119991, Moscow

Yu. D. Aleksandrov

Department of Colloid Chemistry, Faculty of Chemistry, Lomonosov Moscow State University

Email: tsavkelova@mail.ru
Russia, 119991, Moscow

Е. А. Tsavkelova

Department of Microbiology, Biological Faculty, Lomonosov Moscow State University

Author for correspondence.
Email: tsavkelova@mail.ru
Russia, 119234, Moscow

References

  1. Котова И.Б., Тактарова Ю.В., Цавкелова Е.А., Егорова М.А., Бубнов И.А., Малахова Д.В., Ширинкина Л.И., Соколова Т.Г., Бонч-Осмоловская, Е.А. Микробная деградация пластика и пути ее интенсификации // Микробиология. 2021. Т. 90. С. 627‒659.
  2. Kotova I.B., Taktarova Yu.V., Tsavkelova E.A., Egorova M.A., Bubnov I.A., Malakhova D.V., Shirinkina L.I., Sokolova T.G., Bonch-Osmolovskaya E.A. Microbial degradation of plastics and approaches to make it more efficient // Microbiology (Moscow). 2021. V. 90. P. 671‒701.
  3. Плакунов В.К., Ганнесен А.В., Мартьянов С.В., Журина М.В. Биокоррозия синтетических пластмасс: механизмы деградации и способы защиты // Микробиология. 2020. Т. 89. С. 631‒645.
  4. Plakunov V.K., Gannesen A.V., Mart’yanov S.V., Zhurina M.V. Biocorrosion of synthetic plastics: degradation mechanisms and methods of protection // Microbiology (Moscow). 2020. V. 89. P. 647‒659.
  5. Цавкелова Е.А., Егорова М.А., Петрова Е.В., Нетрусов А.И. Образование биогаза микробными сообществами при разложении целлюлозы и пищевых отходов // Прикл. биохимия и микробиология. 2012. Т. 48. № 4. С. 417‒424.
  6. Tsavkelova E.A., Egorova M.A., Petrova E.V., Netrusov A.I. Biogas production by microbial communities via decomposition of cellulose and food waste // Appl. Biochem. Microbiol. 2012. V. 48. P. 377‒384.
  7. Ali M.I., Ahmed S., Robson G., Javed I., Ali N., Atiq N., Hameed A. Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates // J. Basic Microbiol. 2014. V. 54. P. 18–27.
  8. Anwar M.S., Kapri A., Chaudhry V., Mishra A., Ansari M.W., Souche Y., Nautiyal C.S., Zaidi M.G.H., Goel R. Response of indigenously developed bacterial consortia in progressive degradation of polyvinyl chloride // Protoplasma. 2016. V. 253. P. 1023–1032.
  9. Auta H.S., Emenike C.U., Jayanthi B., Fauziah S.H. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment // Mar. Poll. Bull. 2018. V. 127. P. 15–21.
  10. Baran B. Resource (in)efficiency in the EU: a case of plastic waste // Ekonomia i Prawo. Economics and Law. 2022. V. 21. № 1. P. 45‒62.
  11. Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data // Nat. Methods. 2016. V. 13. P. 581‒583.
  12. Geyer R., Jambeck J.R., Law K.L. Production, use, and fate of all plastics ever made // Sci. Adv. 2017. V. 3. P. e1700782.
  13. Giacomucci L., Raddadi N., Soccio M., Lotti N., Fava F. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus // New Biotechnol. 2019. V. 52. P. 35–41.
  14. Manzoor S., Bongcam-Rudloff E., Schnürer A., Müller B. First genome sequence of a syntrophic acetate-oxidizing bacterium, Tepidanaerobacter acetatoxydans strain Re1 // Genome Announc. 2013. V. 1. P. e00213-12.
  15. Matsuura N., Ohashi A., Tourlousse D.M., Sekiguchi Y. Draft genome sequence of the syntrophic lactate-degrading bacterium Tepidanaerobacter syntrophicus JLT // Genome Announc. 2016. V. 4. P. e01712-15.
  16. McMurdie P.J., Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data // PLoS One. 2013. V. 8. P. e61217.
  17. Meckenstock R.U., Boll M., Mouttaki H., Koelschbach J.S., Tarouco P.C., Weyrauch P., Dong X., Himmelberg A.M. Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons // Microb. Physiol. 2016. V. 26. P. 92‒118.
  18. Mihreteab M., Stubblefield B.A., Gilbert E.S. Microbial bioconversion of thermally depolymerized polypropylene by Yarrowia lipolytica for fatty acid production // Appl. Microbiol. Biotechnol. 2019. V. 103. P. 7729‒7740.
  19. Muyzer G., Stams A. The ecology and biotechnology of sulphate-reducing bacteria // Nat. Rev. Microbiol. 2008. V. 6. P. 441‒454.
  20. Mohanan N., Montazer Z., Sharma P.V., Levin D.B. Microbial and enzymatic degradation of synthetic plastics // Front. Microbiol. 2020. V. 11. P. 580709.
  21. Niu L., Song L., Liu X., Dong X. Tepidimicrobium xylanilyticum sp. nov., an anaerobic xylanolytic bacterium, and emended description of the genus Tepidimicrobium // Int. J. Syst. Evol. Microbiol. 2009. V. 59. P. 2698‒2701.
  22. Perevalova A.A., Kublanov I.V., Baslerov R., Zhang G., Bonch-Osmolovskaya E.A. Brockia lithotrophica gen. nov., sp. nov., an anaerobic thermophilic bacterium from a terrestrial hot spring // Int. J. Syst. Evol. Microbiol. 2013. V. 63. P. 479‒483.
  23. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools // Nucl. Acids Res. 2013. V. 41. P. 590‒596.
  24. Rana A.K., Thakur M.K., Saini A.K., Mokhta S.K., Moradi O., Rydzkowski T., Alsanie W.F., Wang Q, Grammatikos S., Thakur V.K. Recent developments in microbial degradation of polypropylene: integrated approaches towards a sustainable environment // Sci. Total Environ. 2022. V. 826. P. 154056.
  25. Ru J., Huo Y., Yang Y. Microbial degradation and valorization of plastic wastes // Front. Microbiol. 2020. V. 11. P. 442.
  26. Sekiguchi Y., Imachi H., Susilorukmi A., Muramatsu M., Ohashi A., Harada H., Hanada S., Kamagata Y. Tepidanaerobacter syntrophicus gen. nov. sp. nov., an anaerobic, moderately thermophilic, syntrophic alcohol- and lactate-degrading bacterium isolated from thermophilic digested sludges // Int. J. Syst. Evol. Microbiol. 2006. V. 56. P. 1621–1629.
  27. Skariyachan S., Patil A.A., Shankar A., Manjunath M., Bachappanavar N., Kiran S. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants // Polym. Degrad. Stab. 2018. V. 149. P. 52–68.
  28. Slobodkin A.I., Tourova T.P., Kostrikina N.A., Lysenko A.M., German K.E., Bonch-Osmolovskaya E.A., Birkeland N.K. Tepidimicrobium ferriphilum gen. nov., sp. nov., a novel moderately thermophilic, Fe(III)-reducing bacterium of the order Clostridiales // Int. J. Syst. Evol. Microbiol. 2006. V. 56. P. 369‒372.
  29. Trüper H.G., Schlegel H.G. Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells of Chromatium okenii // Antonie van Leeuwenhoek. 1964. V. 30. P. 225‒238.
  30. Tsavkelova E., Prokudina L., Egorova M., Leontieva M., Malakhova D., Netrusov A. The structure of the anaerobic thermophilic microbial community for the bioconversion of the cellulose-containing substrates into biogas // Process Biochem. 2018. V. 66. P. 183‒196.
  31. Vortsepneva E., Chevaldonné P., Klyukina A., Naduvaeva E., Todt C., Zhadan A., Tzetlin A., Kublanov I. Microbial associations of shallow-water Mediterranean marine cave Solenogastres (Mollusca) // Peer J. 2021. V. 9. e12655.
  32. Wang Q., Garrity G.M., Tiedje J.M., Cole J.R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy // Appl. Environ. Microbiol. 2007. V. 73. P. 5261‒5267.
  33. Watanabe M., Kojima H., Fukui M. Review of Desulfotomaculum species and proposal of the genera Desulfallas gen. nov., Desulfofundulus gen. nov., Desulfofarcimen gen. nov. and Desulfohalotomaculum gen. nov. // Int. J. Syst. Evol. Microbiol. 2018. V. 68. P. 2891‒2899.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (65KB)
3.

Download (3MB)
4.

Download (75KB)

Copyright (c) 2023 Д.В. Малахова, М.А. Егорова, М.Р. Леонтьева, А.Г. Ельченинов, Т.В. Панова, Ю.Д. Александров, Е.А. Цавкелова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies