Pectinolytic Yeast Saccharomyces paradoxus as a New Gene Pool for Winemaking

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract—A large-scale screening of pectinolytic activity in the yeast Saccharomyces paradoxus isolated from various natural sources in Europe, Asia, North America, and the Hawaiian Islands was carried out. Of the 98 studied strains, pectinolytic activity was absent only in five Hawaiian and two European strains. Most strains were able to secrete active endo-polygalacturonase. North American strains UCDFST 52-225, UCDFST 61-359, UCDFST 61-220, 95-3, and UCDFST 62-186 had very high pectinolytic activity, comparable to or even higher than that of the experimentally obtained tetraploid strain S. cerevisiae VKPM Y-718. Comparative analysis of the nucleotide and amino acid sequences of pectinase genes showed that the North American and Far Eastern populations of S. paradoxus were more genetically diverse than the European and Hawaiian ones. Phylogenetic analysis confirmed the species specificity of the PGU genes of Saccharomyces yeasts. Of the eight Saccharomyces species, high pectinolytic activity is characteristic of S. bayanus and S. paradoxus. Five North American strains with the highest pectinolytic activity are of interest for further molecular genetic studies and breeding work with wine yeasts. The ecological role of endo-polygalacturonase is discussed.

About the authors

A. N. Borovkova

National Research Center “Kurchatov Institute”, Kurchatov Complex for Genetic Research (GosNIIgenetika); Department of Mycology and Algology, Moscow State University

Email: lena_naumova@yahoo.com
Russia, 123098, Moscow; Russia, 119234, Moscow

M. Yu. Shalamitskiy

All-Russian National Institute for Vine and Winemaking “Magarach”, Russian Academy of Sciences

Email: lena_naumova@yahoo.com
Russia, 298600, Yalta

E. S. Naumova

National Research Center “Kurchatov Institute”, Kurchatov Complex for Genetic Research (GosNIIgenetika)

Author for correspondence.
Email: lena_naumova@yahoo.com
Russia, 123098, Moscow

References

  1. Боровкова А.Н., Шаламитский М.Ю., Наумова Е.С. Отбор штаммов Saccharomyces bayanus с высокой пектинолитической активностью и филогенетический анализ генов PGU // Биотехнология. 2022. Т. 38. № 1. С. 13–24.
  2. Borovkova A.N., Shalamitskii M.Yu., Naumova E.S. Selection of Saccharomyces bayanus strains with high pectinolytic activity and phylogenetic analysis of PGU genes // Appl. Biochem. Microbiol. 2022. V. 58. № 9. P. 1–10.
  3. Глушакова А.М., Иванникова Ю.В., Наумова Е.С., Чернов И.Ю., Наумов Г.И. Массовое выделение и идентификация дрожжей Saccharomyces paradoxus из филлосферы растений // Микробиология. 2007. Т. 76. С. 236–242.
  4. Glushakova A.M., Ivannikova Y.V., Naumova E.S., Chernov I.Y., Naumov G.I. Massive isolation and identification of Saccharomyces paradoxus yeasts from plant phyllosphere // Microbiology (Moscow). 2007. V. 76. P. 205–210.
  5. Наумов Г.И. Новая разновидность S. bayanus var. uvarum, установленная генетическим анализом // Микробиология. 2000. Т. 69. С. 410–414.
  6. Naumov G.I. Saccharomyces bayanus var. uvarum comb. nov., a new variety established by genetic analysis // Microbiology (Moscow). 2000. V. 69. P. 338–342.
  7. Наумов Г.И. Генетическое родство и биологический статус индустриально важных дрожжей Saccharomyces eubayanus Sampaio et al. // ДАН. 2017. T. 473. № 5. C. 622–625.
  8. Naumov G.I. Genetic relationship and biological status of the industrially important yeast Saccharomyces eubayanus Sampaio et al. // Dokl. Biol. Sciences. 2017. V. 473. P. 73–76.
  9. Наумов Г.И. Эколого-биогеографические особенности дрожжей Saccharomyces paradoxus Batschinskaya и родственных видов: (I) ранние исследования // Микробиология. 2013. Т. 82. С. 387–394.
  10. Naumov G.I. Ecological and biogeographical features of Saccharomyces paradoxus Batschinskaya yeast and related species: I. The early studies // Microbiology (Moscow). 2013. V. 82. P. 397–403.
  11. Наумов Г.И., Наумова Е.С., Мартыненко Н.Н., Маснёф Помаред И. Таксономия, экология и генетика дрожжей Saccharomyces bayanus – нового объекта в науке и практике // Микробиология. 2011. Т. 80. С. 723–730.
  12. Naumov G.I., Naumova E.S., Martynenko N.N., Masneuf-Pomarède I. Taxonomy, ecology, and genetics of the yeast Saccharomyces bayanus: a new object for science and practice // Microbiology (Moscow). 2011. V. 80. P. 735–742.
  13. Наумова Е.С., Боровкова А.Н., Шаламитский М.Ю., Наумов Г.И. Природный полиморфизм пектиназных генов PGU дрожжей рода Saccharomyces // Микробиология. 2021. Т. 90. С. 344–356.
  14. Naumova E.S., Borovkova A.N., Naumov G.I., Shalamitskiy M.Y. Natural polymorphism of pectinase PGU genes in the Saccharomyces yeasts // Microbiology (Moscow). 2021. V. 90. P. 349–360.
  15. Серпова Е.В., Кишковская С.А., Мартыненко Н.Н., Наумова Е.С. Молекулярно-генетическая идентификация винных дрожжей Крыма // Биотехнология. 2011. № 6. С. 47–54.
  16. Belda I., Conchillo L.B., Ruiz J., Navascués E., Marquina D., Santos A. Selection and use of pectinolytic yeasts for improving clarification and phenolic extraction in winemaking // Int. J. Food Microbiol. 2016. V. 223. P. 1–8.
  17. Belda I., Ruiz J., Esteban-Fernández A., Navascués E., Marquina D., Santos A., Moreno-Arribas M.V. Microbial contribution to wine aroma and its intended use for wine quality improvement // Molecules. 2017. V. 22. P. 189–218.
  18. Bendixsen D.P., Frazão J.G., Stelkens R. Saccharomyces yeast hybrids on the rise // Yeast. 2022. V. 39. P. 40–54.
  19. Berbegal C., Khomenko I., Russo P., Spano G., Fragasso M., Biasioli F., Capozzi V. PTR-ToF-MS for the online monitoring of alcoholic fermentation in wine: assessment of VOCs variability associated with different combinations of Saccharomyces/Non-Saccharomyces as a case-study // Fermentation. 2020. V. 6. P. 55–72.
  20. da Silva E.G., de Fátima Borges M., Medina C., Hilsdorf Piccoli R., Freitas Schwan R. Pectinolytic enzymes secreted by yeasts from tropical fruits // FEMS Yeast Res. 2005. V. 5. P. 859–865.
  21. Divol B., Rensburg P. PGU1 gene natural deletion is responsible for the absence of endo-polygalacturonase activity in some wine strains of Saccharomyces cerevisiae // FEMS Yeast Res. 2007. V. 7. P. 1328−1339.
  22. Eschstruth A., Divol B. Comparative characterization of endo-polygalacturonase (Pgu1) from Saccharomyces cerevisiae and Saccharomyces paradoxus under winemaking conditions // A-ppl. Microbiol. Biotechnol. 2011. V. 91. P. 623–634.
  23. Fernández-González M., Ubeda J.F., Vasudevan T.G., Cordero Otero R.R., Briones A.I. Evaluation of polygalacturonase activity in Saccharomyces cerevisiae wine strains // FEMS Microbiol. Lett. 2004. V. 237. P. 261−266.
  24. He P.Y., Shao X.Q., Duan S.F., Han D.Y., Li K., Shi J.Y., Zhang R.P., Han P.J., Wang Q.M., Bai F.Y. Highly diverged lineages of Saccharomyces paradoxus in temperate to subtropical climate zones in China // Yeast. 2022. V. 39. P. 69–82.
  25. Hebly M., Brickwedde A., Bolat I., Driessen M.R.M., de Hulster E.A.F., van den Broek M., Pronk J.T., Geertman J.-M., Daran J.-M., Daran-Lapujade P. S. cerevisiae × S. eu-bayanus interspecific hybrid, the best of both worlds and beyond // FEMS Yeast Res. 2015. V. 15. Art. fov005.
  26. Hutzler M., Michel M., Kunz O., Kuusisto T., Magalhães F., Krogerus K., Gibson B. Unique brewing-relevant properties of a strain of Saccharomyces jurei isolated from ash (Fraxinus excelsior) // Front. Microbiol. 2021. V. 12. Art. 645271.
  27. Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets // Mol. Biol. Evol. 2016. V. 33. P. 1870–1874.
  28. Kurtzman C.P. Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora // FEMS Yeast Res. 2003. V. 4. P. 233–245.
  29. Libkind D., Hittinger C.T., Valério E., Gonçalves C., Dover J., Johnston M., Gonçalves P., Sampaio J.P. Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast // Proc. Natl. Acad. Sci. USA. 2011. V. 108. P. 14539–14544.
  30. Liti G., Peruffo A., James S.A., Roberts I.N., Louis E.J. Inferences of evolutionary relationships from a population survey of LTR-retrotransposons and telomeric-associated sequences in the Saccharomyces sensu stricto complex // Yeast. 2005. V. 22. P. 177–192.
  31. Liti G., David B., Barton H., Louis E.J. Sequence diversity, reproductive isolation and species concepts in Saccharomyces // Genetics. 2006. V. 174. P. 839–850.
  32. Lõoke M., Kristjuhan K., Kristjuhan A. Extraction of genomic DNA from yeasts for PCR based applications // Biotechniques. 2011. V. 50. P. 325–328.
  33. Louw C., La Grange D., Pretorius I.S, van Rensburg P. The effect of polysaccharide-degrading wine yeast transformants on the efficiency of wine processing and wine flavor // J. Biotechnol. 2006. V. 125. P. 447–461.
  34. Louw C., Young P.R., van Rensburg P., Divol B. Epigenetic regulation of PGU1 transcription in Saccharomyces cerevisi-ae // FEMS Yeast Res. 2010. V. 10. P. 158–167.
  35. Morard M., Benavent-Gil Y., Ortiz-Tovar G., Pérez-Través L., Querol A., Toft Ch., Barrio E. Genome structure reveals the diversity of mating mechanisms in Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids, and the genomic instability that promotes phenotypic diversity // Microb. Genom. 2020. V. 6. P. e000333.
  36. Naseeb S., James S.A., Alsammar H., Michaels C.J., Gini B., Nueno-Palop C., Bond C.J., McGhie H., Roberts I.N., Delneri D. Saccharomyces jurei sp. nov., isolation and genetic identification of a novel yeast species from Quercus robur // Int. J. Syst. Evol. Microbiol. 2017. V. 67. P. 2046–2052.
  37. Naumov G.I. Genetic basis for classification and identification of the ascomycetous yeasts // Stud. Mycol. 1987. V. 30. P. 469–475.
  38. Naumov G.I., Naumova E.S., Gaillardin C. Genetic and karyotypic identification of wine Saccharomyces bayanus yeasts isolated in France and Italy // Syst. Appl. Microbiol. 1993. V. 16. P. 274–279.
  39. Naumov G.I., James S.A., Naumova E.S., Louis E.J., Roberts I.N. Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae // Int. J. Evol. Microbiol. 2000. V. 50. P. 1931–1942.
  40. Naumova E.S., Naumov G.I., Masneuf-Pomarede I., Aigle M., Dubourdieu D. Molecular genetic study of introgression between Saccharomyces bayanus and S. cerevisiae // Yeast. 2005. V. 22. P. 1099–1115.
  41. Nespolo R.F., Villarroel C.A., Oporto C.I., Tapia S.M., Vega-Macaya F., Urbina K., De Chiara M., Mozzachiodi S., Mikhalev E., Thompson D., Larrondo L.F., Saenz-Agudelo P., Liti G., Cubillos F.A. An out-of-patagonia migration explains the worldwide diversity and distribution of Saccharomyces eubayanus lineages // PLoS Genetics. 2020. V. 16. e1008777.
  42. Nikulin J., Krogerus K., Gibson B. Alternative Saccharomyces interspecies hybrid combinations and their potential for low-temperature wort fermentation // Yeast. 2018. V. 35. P. 113–127.
  43. Peris D., Pérez-Torrado R., Hittinger C.T., Barrio E., Querol A. On the origins and industrial applications of Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids // Yeast. 2018. V. 35. P. 51–69.
  44. Pérez-Través L., Lopes C.A., Querol A., Barrio E. On the complexity of the Saccharomyces bayanus taxon: hybridization and potential hybrid speciation // PLoS One. 2014. V. 9. e93729.
  45. Pretorius I.S. Tasting the terroir of wine yeast innovation // FEMS Yeast Res. 2020. V. 20. Art. foz084.
  46. Redžepović S., Orlić S., Majdak A., Kozina B., Volschenk H., Viljoen-Bloom M. Differential malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation // Int. J. Food. Microbiol. 2003. V. 83. P. 49–61.
  47. Rementeria A., Rodriguez J.A., Cadaval A., Amenabar R., Muguruza J.R., Hernando F.L., Sevilla M.J. Yeast associated with spontaneous fermentations of white wines from “Txakoli de Bizkaia” region (Basque Country, North Spain) // Int. J. Food Microbiol. 2003. V. 86. P. 201–207.
  48. Rollero S., Zietsman A.J.J., Buffetto F., Schückel J., Ortiz-Julien A., Divol B. Kluyveromyces marxianus secretes a pectinase in shiraz grape must that impacts technological properties and aroma profile of wine // Agric. Food Chem. 2018. V. 66. P. 11739–11747.
  49. Sampaio J.P., Gonçalves P. Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus // Appl. Environ. Microbiol. 2008. V. 74. P. 2144–2152.
  50. Torriani S., Zapparoli G., Suzzi G. Genetic and phenotypic diversity of Saccharomyces sensu stricto strains isolated from Amarone wine // Antonie van Leeuwenhoek. 1999. V. 5. P. 207–215.
  51. Tufariello M., Fragasso M., Pico J., Panighel A., Castellarin S.D., Flamini R., Grieco F. Influence of Non-Saccharomyces on wine chemistry: a focus on aroma-related compounds // Molecules. 2021. V. 26. P. 644–666.
  52. Van Rensburg P., Pretorius I.S. Enzymes in winemaking: harnessing natural catalysts for efficient biotransformations // S. Afr. J. Enol. Viticult. 2000. V. 21. P. 52–73.
  53. Vaughan-Martini A., Martini A. Saccharomyces Meyen ex Reess (1870) // The Yeast, a Taxonomic Study / Eds. Kurtzman C.P., Fell J.W., Boekhout T. 5th edn. Amsterdam: Elsevier, 2011. V. 2. P. 733–746.
  54. Wang S.A., Bai F.Y. Saccharomyces arboricolus sp. nov., a yeast species from tree bark // Int. J. Syst. Evol. Microbiol. 2008. V. 58. P. 510–514.
  55. Yue J.X., Li J., Aigrain L., Hallin J., Persson K., Oliver K., Bergstrom A., Coupland P., Warringer J., Lagomarsino M.C., Fischer G., Durbin R., Liti G. Contrasting evolutionary genome dynamics between domesticated and wild yeasts // Nature Genetics. 2017. V. 49. P. 913–924.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (382KB)
3.

Download (1MB)
4.

Download (173KB)

Copyright (c) 2023 А.Н. Боровкова, М.Ю. Шаламитский, Е.С. Наумова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies