New Records of Archaeorhizomycetes from Russia Revealed by Metagenomic Approach

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The class Archaeorhizomycetes (Taphrinomycotina, Ascomycota) is a cosmopolitan group of fungi associated with the plant root system. Representatives of this class are extremely poorly studied due to the difficulty of cultivation, but sequences belonging to Archaeorhizomycetes are often detected during sequencing of natural substrates. Four unique sequences belonging to Archaeorhizomycetes were obtained during a study of the diversity of fungi associated with the orchid Goodyera repens by next-generation high-throughput sequencing of the ITS2 site. One sequence identical to Archaeorhizomyces borealis was identified in Russia for the first time, while two sequences presumably belong to a yet undescribed genus. One sequence belonging to an undescribed species of the genus Archaeorhizomyces is the most frequently detected in all types of samples (sod-podzolic soil, coniferous tree roots, rhizosphere, and orchid roots). The presence of nucleotide sequences of representatives of this class in the root system of Goodyera repens was shown for the first time, and the presence of one sequence in free soil was shown for the first time. The sequences were deposited in the GenBank database.

Sobre autores

N. Bibikov

Lomonosov Moscow State University

Email: bibik0808@mail.ru
Russia, 119234, Moscow

E. Voronina

Lomonosov Moscow State University

Email: mvsadnik@list.ru
Russia, 119234, Moscow

A. Kurakov

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: kurakov57@mail.ru
Russia, 119234, Moscow

Bibliografia

  1. Buscardo E., Rodríguez-Echeverría S., Barrico L. et al. Is the potential for the formation of common mycorrhizal networks influenced by fire frequency? Soil Biol. Biochem. 2012. V. 46. P. 136–144. https://doi.org/10.1016/j.soilbio.2011.12.007
  2. GenBank. National Center for Biotechnology Information, 2022. https://www.ncbi.nlm.nih.gov/genbank. Accessed 14.10.2022.
  3. Genre A., Lanfranco L., Perotto S. et al. Unique and common traits in mycorrhizal symbioses. Nat. Rev. Microbiol. 2020. V. 18 (11). P. 649–660. https://doi.org/10.1038/s41579-020-0402-3
  4. Huang J., Nara K., Zong K. et al. Ectomycorrhizal fungal communities associated with Masson pine (Pinus massoniana) and white oak (Quercus fabri) in a manganese mining region in Hunan Province, China. Fungal Ecol. 2014. V. 9. P. 1–10. https://doi.org/10.1016/j.funeco.2014.01.001
  5. Kõljalg U., Nilsson H.R., Schigel D. et al. The taxon hypo-thesis paradigm – on the unambiguous detection and communication of taxa. Microorganisms. 2020. V. 8 (12). P. 1910. https://doi.org/10.3390/microorganisms8121910
  6. Lindahl B.D., Ihrmark K., Boberg J. et al. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol. 2007. V. 173 (3). P. 611–620. https://doi.org/10.1111/j.1469-8137.2006.01936.x
  7. Malysheva E.F., Malysheva V.F., Shchepin O.N. et al. Wildfire influence on structure and species composition of ectomycorrhizal fungal communities in pine forests in northwest Russia: the results of metagenomic analysis. Mikologiya i fitopatologiya. 2018. V. 52 (5). P. 328–348. https://doi.org/10.1134/S0026364818050057
  8. Menkis A., Burokienė D., Gaitnieks T. et al. Occurrence and impact of the root-rot biocontrol agent Phlebiopsis gigantea on soil fungal communities in Picea abies forests of northern Europe. FEMS Microbiol. Ecol. 2012. V. 81 (2). P. 438–445. https://doi.org/10.1111/j.1574-6941.2012.01366.x
  9. Menkis A., Urbina H., James T.Y. et al. Archaeorhizomyces borealis sp. nov. and a sequence-based classification of related soil fungal species. Fungal Biol. 2014. V. 118 (12). P. 943–955. https://doi.org/10.1016/j.funbio.2014.08.005
  10. Miyamoto Y., Maximov T.C., Kononov A. et al. Soil propagule banks of ectomycorrhizal fungi associated with Larix cajanderi above the treeline in the Siberian Arctic. Mycoscience. 2022. V. 63 (4). P. 142–148. https://doi.org/10.47371/mycosci.2022.05.002
  11. Motiejūnaitė J., Kačergius A., Kasparavičius J. et al. Response of ectomycorrhizal and other Pinus sylvestris root-associated fungi to the load of allochthonous material from a great cormorant colony. Mycorrhiza. 2021. V. 31 (4). P. 471–481. https://doi.org/10.1007/s00572-021-01034-5
  12. Prenafeta Boldú F.X.P., Summerbell R.C., de Boer W. et al. Biodiversity and ecology of soil fungi in a primary succession of a temperate coastal dune system. Nova Hedwigia. 2014. V. 99 (3–4). P. 347–372. https://doi.org/10.1127/0029-5035/2014/0203
  13. Qin J., Zhang W., Ge Z.W. et al. Molecular identifications uncover diverse fungal symbionts of Pleione (Orchida-ceae). Fungal Ecol. 2019. V. 37. P. 19–29. https://doi.org/10.1016/j.funeco.2018.10.003
  14. Rosling A., Cox F., Cruz-Martinez K. et al. Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science. 2011. V. 333 (6044). P. 876–879. https://doi.org/10.1126/science.1206958
  15. Rosling A., Timling I., Taylor D.L. Archaeorhizomycetes: patterns of distribution and abundance in soil. In: B.A. Horwitz, P.K. Mukherjee, M. Mukherjee (eds). Genomics of soil-and plant-associated fungi. Springer, Berlin, Heidelberg, 2013. P. 333–349. https://doi.org/10.1007/978-3-642-39339-6_14
  16. Schadt C.W., Rosling A. Global diversity and geography of soil fungi. Minus one widespread group. Science. 2015. V. 348 (6242). https://doi.org/10.1126/science.aaa4269
  17. Suetsugu K., Matsuoka S., Shutoh K. et al. Mycorrhizal communities of two closely related species, Pyrola subaphylla and P. japonica, with contrasting degrees of mycoheterotrophy in a sympatric habitat. Mycorrhiza. 2021. V. 31 (2). P. 219–229. https://doi.org/10.1007/s00572-020-01002-5
  18. Taylor D.L., Hollingsworth T.N., McFarland J.W. et al. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol. Monogr. 2014. V. 84. P. 3–20. https://doi.org/10.1890/12-1693.1
  19. Uesugi T., Nakano M., Selosse M.A. et al. Pyrola japonica, a partially mycoheterotrophic Ericaceae, has mycorrhizal preference for russulacean fungi in central Japan. Mycorrhiza. 2016. V. 26 (8). P. 819–829. https://doi.org/10.1007/s00572-016-0715-2
  20. UNITE. 2022. https://unite.ut.ee/index.php. Accessed 14.10.2022.
  21. Urban A., Puschenreiter M., Strauss J. et al. Diversity and structure of ectomycorrhizal and co-associated fungal communities in a serpentine soil. Mycorrhiza. 2008. V. 18 (6). P. 339–354. https://doi.org/10.1007/s00572-008-0189-y
  22. Voronina E.Y., Malysheva E.F., Malysheva V.F. et al. A mixo-trophy is in question: new data on fungal community associated with photosynthetic terrestrial orchid Goodyera repens. Botanica Pacifica. 2018. V. 7 (1). P. 51–61. https://doi.org/10.17581/bp.2018.07106
  23. Zhang X.Y., Tang G.L., Xu X.Y. et al. Insights into deep-sea sediment fungal communities from the East Indian Ocean using targeted environmental sequencing combined with traditional cultivation. PLOS One. 2014. V. 9 (10). P. 109–118. https://doi.org/10.1371/journal.pone.0109118

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (763KB)
3.

Baixar (89KB)

Declaração de direitos autorais © N.M. Bibikov, E.Yu. Voronina, A.V. Kurakov, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies