PHYLOGENY OF TRICHIA BRUNNEA AND NEW NAMES IN THE GENUS ARCYRIA (TRICHIALES, MYXOMYCETES)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Recent phylogenetic studies indicate taxonomic uncertainty of some species in the genera Arcyria (Arcyriaceae) and Trichia (Trichiaceae). For example, a phylogenetic position of Trichia brunnea still is not resolved. We revised a taxonomic position of this species based on extensively sampled 18S nrDNA sequences, as well as a morphological analysis of sporocarps and spores. The nomenclatural history of T. brunnea is briefly presented and a comprehensive morphological description of the species is provided. In result, we support the transfer of T. brunnea to Arcyria. Because of the name Arcyria brunnea exists already, we propose a new name, A. brunneo-iridescens (= Trichia brunnea).

About the authors

A. V. Vlasenko

Central Siberian Botanical Garden of Siberian Branch of the Russian Academy of Sciences

Email: anastasiamix81@mail.ru
Russia, 630090, Novosibirsk

Yu. K. Novozhilov

Komarov Botanical Institute of the Russian Academy of Sciences

Email: yurynovozh1lov@yandex.ru
Russia, 197376, St. Petersburg

A. A. Bondar

Institute of Chemical Biology and Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences

Email: ibp@ibp.ru
Russia, 630090, Novosibirsk

V. A. Vlasenko

Central Siberian Botanical Garden of Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: vlasenkomyces@mail.ru
Russia, 630090, Novosibirsk

References

  1. Altschul S., Gish W., Miller W. et al. Basic local alignment search tool. J. Molec. Biol. 1990. V. 215 (3). P. 403–410. https://doi.org/10.1016/S0022-2836(05)80360
  2. Cox J.J. Notes on coprophilous myxomycetes from the Western United-States. Mycologia. 1981. V. 73. P. 741–747.
  3. Eliasson U. Coprophilous myxomycetes: Recent advances and future research directions. Fungal Diversity. 2013. V. 59. P. 85–90. https://doi.org/10.1007/s13225-012-0185-6
  4. Eliasson U.H., Keller H.W., Schoknecht J.D. Kelleromyxa, a new generic name for Licea fimicola (Myxomycetes). Mycol. Res. 1991. V. 95. P. 1201–1207. https://doi.org/10.1016/S0953-7562(09)80011-7
  5. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Molec. Evol. 1981. V. 17. P. 368–376. https://doi.org/10.1007/BF01734359
  6. Feng Y., Schnittler M. Molecular or morphological species? Myxomycete diversity in a deciduous forest in northeastern Germany. Nova Hedwigia. 2017. V. 104 (1–3). P. 359–380. https://doi.org/10.1127/nova_hedwigia/2016/0326
  7. Fiore-Donno A.M., Berney C., Pawlowski J. et al. Higher-order phylogeny of plasmodial slime molds (Myxogastria) based on elongation factor 1-A and small subunit rRNA gene sequences. J. Eukaryotic Microbiol. 2005. V. 52 (3). P. 201–210. https://doi.org/10.1111/j.1550-7408.2005.00032.x
  8. Fiore-Donno A.M., Clissmann F., Meyer M. et al. Two-gene phylogeny of bright-spored Myxomycetes (slime moulds, superorder Lucisporidia). PLOS One. 2013. V. 8. e62586. https://doi.org/10.1371/journal.pone.0062586
  9. Fiore-Donno A.M., Nikolaev S.I., Nelson M. et al. Deep phylogeny and evolution of slime moulds (Mycetozoa). Protist. 2010. V. 161 (1). P. 55–70. https://doi.org/10.1016/j.protis.2009.05.002
  10. García-Cunchillos I., Zamora J.C., Ryberg M. et al. Phylogeny and evolution of morphological structures in a highly diverse lineage of fruiting-body-forming amoebae, order Trichiales (Myxomycetes, Amoebozoa). Molec. Phylog. Evol. 2022. V. 177. Art. 107609. https://doi.org/10.1016/j.ympev.2022.107609
  11. Gilbert H.C., Martin G.W. Myxomycetes found on the bark of living trees. Univ. Iowa Stud. Natural History. 1933. V. 15. P. 3–8.
  12. Härkönen M. Corticolous Myxomycetes in three different habitats in southern Finland. Karstenia. 1977. V. 17. P. 19–32. https://doi.org/10.29203/ka.1977.121
  13. Katoh K., Misawa K., Kuma K. et al. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002. V. 30. P. 3059–3066. https://doi.org/10.1093/nar/gkf436
  14. Katoh K., Standley D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molec. Biol. Evol. 2013. V. 30 (4). P. 772–780. https://doi.org/10.1093/molbev/mst010
  15. Katoh K., Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinformatics. 2008. V. 9 (4). P. 286–298. https://doi.org/10.1093/bib/bbn013
  16. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molec. Biol. Evol. 2018. V. 35. P. 1547–1549. https://doi.org/10.1093/molbev/msy096
  17. Lado C. An online nomenclatural information system of Eumycetozoa. Real Jardín Botánico, CSIC, Madrid. 2005–2023. http://www.nomen.eumycetozoa.com
  18. Leontyev D.V., Schnittler M., Stephenson S.L. et al. Towards a phylogenetic classification of the Myxomycetes. Phytotaxa. 2019. V. 399 (3). P. 209–238. https://doi.org/10.11646/phytotaxa.399.3.5
  19. Nguyen L.-T., Schmidt H.A., von Haeseler A. et al. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molec. Biol. Evol. 2015. V. 32 (1). P. 268–274. https://doi.org/10.1093/molbev/msu300
  20. Novozhilov Y.K., Zemlianskaia I.V., Schnittler M. et al. Myxomycete diversity and ecology in the arid regions of the Lower Volga River Basin (Russia). Fungal Diversity. 2006. V. 23. P. 193–241.
  21. Poulain M., Bozonnet J., Kohn A. Les Myxomycetes. FMBDS, Sevrier, 2012.
  22. Rambaut A. FigTree v.1.4.4. 2018. http://tree.bio.ed.ac.uk/ software/figtree/. Accessed 23.06.2023.
  23. Ronikier A., García-Cunchillos I., Janik P. et al. Nivicolous Trichiales from the austral Andes: unexpected diversity including two new species. Mycologia. 2020. V. 112 (4). P. 753–780. https://doi.org/10.1080/00275514.2020.1759978
  24. Trichia brunnea J.J. Cox. Meise Botanic Garden Herbarium. 2023a. https://www.botanicalcollections.be/#/en/specimen/BR5020067892894. Accessed 23.06.2023.
  25. Trichia brunnea J.J. Cox. Danish Myxomycetes. 2023b. http://www.myx.dk/spp/tribru.html. Accessed 23.06.2023.
  26. Trifinopoulos J., Nguyen L.-T., von Haeseler A. et al. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016. V. 44 (W1). P. 232–235. https://doi.org/10.1093/nar/gkw256
  27. Vlasenko A.V., Filippova N.V., Vlasenko V.A. Echinostelium novozhilovii (Echinosteliaceae, Myxomycetes), a new species from Northern Asia. Phytotaxa. 2018. V. 367 (1). P. 091–096. https://doi.org/10.11646/phytotaxa.367.1.11
  28. Vlasenko A.V., Novozhilov Yu.K., Vlasenko V.A. et al. New data on obligate coprobiont myxomycetes of Siberia. Izvestiya Irkutskogo gosudarstvennogo universiteta. 2017. V. 21. P. 50–60 (in Russ.).
  29. Vlasenko A., Vlasenko V. First Asian record of Comatricha anomala, a rare epiphytic corticolous myxomycete. Karstenia. 2020. V. 58 (1). P. 10–15. https://doi.org/10.29203/ka.2020.485
  30. Vlasenko A.V., Vlasenko V.A., Novozhilov Yu.K. et al. Methods and difficulties of identifying species in studies on the ecology and distribution patterns of spore organisms. Contemporary Problems of Ecology. 2020. V. 13 (4). P. 346–359. https://doi.org/10.1134/S1995425520040113
  31. Vlasenko A.V., Sambyla Ch.N., Novozhilov Yu.K. et al. Rare myxomycete species from Siberia and first record of Tubifera dimorphotheca in Russia. Czech Mycology. 2021a. https://doi.org/10.33585/cmy.73209
  32. Vlasenko A., Shanmak R., Sambyla Ch. First data on Myxomycetes of the State Nature Preserve “Sut-Khol”, Republic of Tuva (Tyva), Russia. In: Northern Asia plant diversity: Current trends in research and conservation. BIO Web of Conferences. 2021b. V. 38, 00136, pp. 1–5.
  33. Walker L.M., Leontyev D.V., Stephenson S.L. Perichaena longipes, a new myxomycete from the Neotropics. Mycologia. 2015. V. 107 (5). P. 1012–1022. https://doi.org/10.3852/14-330
  34. Власенко А.В., Новожилов Ю.К., Власенко В.А. и др. (Vlasenko et al.) Новые данные об облигатных копробионтных миксомицетах Сибири // Известия Иркутского государственного университета. Серия: Биология. Экология. 2017. Т. 21. С. 50–60.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (728KB)
3.

Download (2MB)
4.

Download (2MB)
5.

Download (1MB)

Copyright (c) 2023 A.V. Vlasenko, Yu.K. Novozhilov, A.A. Bondar, V.A. Vlasenko

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».