Diversity of Microfungi on Wood of the Coastal Zone of Heiss Island (Franz Joseph Land Archipelago)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The material for the study was wood samples that were collected in the summer of 2021 on the coast of Heiss Island in the Franz Josef Land archipelago, in the Arctic Ocean. Heiss Island is located in the central area of the archipelago. The wood was 1) brought by the sea (“drift wood”) and was located on the shore at minor distances from the water line or 2) anthropogenic origin and was an external part of abandoned structures. As a result of investigations, we revealed complexes of microfungi on coniferous and deciduous wood, which include 30 species of microfungi, mainly from the Ascomycota division. Species of the genus Cadophora were found in the greatest number of examined samples. Indicators of species diversity and occurrence of representatives of the Basidio-mycota department were low. The yeast component (Ascomycota and Basidiomycota) accounted for 23% of the identified species. A total of 25 species were found in wood samples of anthropogenic origin and 12 species in drift wood samples. Studies of the enzymatic activity of microfungi showed that ligninolytic activity was noted in 50% of the strains studied, amylazolytic in 62%, and cellulolytic in 85% of the strains studied. A group of psychrotrophic species with high ligninolytic activity, together with cellulolytic and amylase activity, and well adapted to decomposition of wood substrate in the extreme conditions of the Arctic was identified. Activity profiles of different isolates of the same species do not always coincide and expression of individual enzymatic activity factors in many cases has a strain character.

About the authors

I. G. Pankova

Botanical Institute of Russian Academy of Sciences

Author for correspondence.
Email: inna2008@nextmail.ru
Russia, St. Petersburg

I. Yu. Kirtsideli

Botanical Institute of Russian Academy of Sciences

Author for correspondence.
Email: microfungi@mail.ru
Russia, St. Petersburg

V. A. Iliushin

Botanical Institute of Russian Academy of Sciences

Author for correspondence.
Email: ilva94@yandex.ru
Russia, St. Petersburg

M. S. Zelenskaya

Saint-Petersburg State University

Author for correspondence.
Email: marsz@yandex.ru
Russia, St. Petersburg

D. Yu. Vlasov

Botanical Institute of Russian Academy of Sciences; Saint-Petersburg State University

Author for correspondence.
Email: dmitry.vlasov@mail.ru
Russia, St. Petersburg; Russia, St. Petersburg

М. V. Gavrilo

Arctic and Antarctic Research Institute; Association Maritime Heritage

Author for correspondence.
Email: m_gavrilo@mail.ru
Russia, St. Petersburg; Russia, St. Petersburg

E. P. Barantsevich

Northwestern Almazov Federal medical research center of the Russian Federation Ministry of Health

Author for correspondence.
Email: lenabara2003@inbox.ru
Russia, St. Petersburg

References

  1. Aleksandrova V.D. Geobotanical zoning of the Arctic and Antarctic. Nauka, Leningrad, 1977 (in Russ.).
  2. Almeida C., Eguereva E., Kehraus S. et al. Hydroxylated sclerosporin derivatives from the marine-derived fungus Cadophora malorum. J. Nat. Prod. 2010. V. 73 (3). P. 476–478. https://doi.org/10.1021/np900608d
  3. Arenz B.E., Blanchette R.A. Investigations of fungal diversity in wooden structures and soils at historic sites on the Antarctic Peninsula. Can. J. Microbiol. 2009. V. 55. P. 46–56. https://doi.org/10.1139/W08-120
  4. Arenz B.E., Blanchette R.A. Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea region and McMurdo dry valleys. Soil Biol. Biochem. 2011. V. 43. P. 308–315. https://doi.org/10.1016/j.soilbio.2010.10.016
  5. Arenz B.E., Blanchette R.A., Farrell R.L. Fungal diversity in Antarctic soils. In: D. Cowan (ed.). Antarctic terrestrial microbiology: Physical and biological properties of Antarctic soils. Springer, 2014. P. 35–53. https://doi.org/10.1139/W08-120
  6. Białkowska A.M., Szulczewska K.M., Krysiak J. Genetic and biochemical characterization of yeasts isolated from Antarctic soil samples. Polar Biol. 2017. V. 40. P. 1787–1803. https://doi.org/10.1007/s00300-017-2102-7
  7. Blanchette R.A., Held B.W., Arenz B.E. et al. An Antarctic hot spot for fungi at Shackleton’s historic hut on Cape Royds. Microb. Ecol. 2010. V. 60. P. 29–38. https://doi.org/10.1007/s00248-010-9664-z
  8. Blanchette R., Held B., Hellman L. et al. Arctic driftwood reveals unexpectedly rich fungal diversity. Fungal Ecol. 2016. V. 23. P. 58–63. https://doi.org/10.1016/j.funeco.2016.06.001
  9. Blanchette R.A., Held B.W., Jurgens J.A. et al. Wood destroying soft rot fungi in the historic expedition huts of Antarctica. Appl. Environ. Microbiol. 2004. V. 70. P. 1328–1335. https://doi.org/10.1128/AEM.70.3.1328-1335.2004
  10. Blanchette R.A., Held B.W., Jurgens J. et al. Fungi attacking historic wood of Fort Conger and the Peary Huts in the High Arctic. PlOS One. 2021. V. 16 (1). https://doi.org/10.1371/journal.pone.0246049
  11. Burgaud G., Le Calvez T., Arzur D. et al. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ. Microbiol. 2009. V. 11(6). P. 1588–1600. https://doi.org/10.1111/j.1462-2920.2009.01886.x
  12. Cadete R.M., Lopes M.R., Rosa C.A. Yeasts associated with decomposing plant material and rotting wood. In: P. Buzzini, M.A. Lachance, A. Yurkov (eds). Yeasts in natural ecosystems: diversity. Springer, 2017, pp. 265–292. https://doi.org/10.1007/978-3-319-62683-3_9
  13. Chilingarov A.N. Essays on the geography of the Arctic. Moscow, 2009 (in Russ.).
  14. Chuchala D., Sandak A., Orlowski K.A. et al. Characterization of Arctic driftwood as naturally modified material. Pt 1: Machinability. Coatings. 2021. V. 11 (3). P. 278–284. https://doi.org/10.3390/coatings11030278
  15. Colwell R.K., Chao A., Gotelli N.J. et al. Models and estimators linking individual-based and sample based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 2012. V. 5 (1). P. 3–21. https://doi.org/10.1093/jpe/rtr044
  16. Connell L., Redman R., Craig S. et al. Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica. Soil Biol. Biochem. 2006. V. 38. P. 3083–3094. https://doi.org/10.1016/j.soilbio.2006.02.016
  17. Crous P.W., Luangsa-ard J., Wingfield M.J. et al. Fungal planet description sheets: 785–867. Persoonia. 2018. V. 41. P. 238–417. https://doi.org/10.3767/persoonia.2018.41.12
  18. Domsch K.H., Gams W., Anderson T.-H. Compendium of soil fungi. IHW-Verlag, Eching, 2007. https://doi.org/10.1111/j.1365-2389.2008.01052_1.x
  19. Dryupin V.G. Franz Joseph Land. Arkhangelsk, 2004 (in Russ.).
  20. Dyke A.S., England J., Reimnitz E. et al. Changes in driftwood delivery to the Canadian Arctic Archipelago: the hypothesis of postglacial oscillations of the Transpolar Drift. Arctic. 1997. V. 50 (1). P. 1–16.
  21. Eggertsson Ó. Driftwood as an indicator of relative changes in the influx of Arctic and Atlantic water into the coastal areas of Svalbard. Polar Research. 1994. V. 13. P. 209–218. https://doi.org/:10.1111/J.1751-8369.1994.TB00450.X
  22. Gams W. Phialophora and some similar morphologically little-differentiated anamorphs of divergent Ascomycetes. Stud. Mycol. 2000. V. 45. P. 187–199.
  23. Godinho V.M., Furbino L.E., Santiago I.F. et al. Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. The ISME J. 2013. V. 7. P. 1434–1451. https://doi.org/10.1038/ismej.2013.77
  24. González A.E., Martínez A.T., Almendros G. et al. A study of yeasts during the delignification and fungal transformation of wood into cattle feed in Chilean rain forest. Antonie van Leeuwenhoek. 1989. V. 55. P. 221–236. https://doi.org/10.1007/bf00393851
  25. Govorukha L.S. Landscape and geographic characteristics of Franz Josef Land. Tr. AANII Problemy polyarnoy geografii. 1968. P. 86–117 (in Russ.).
  26. Govorukha L.S. Franz Joseph Land. Moscow, 1970 (in Russ.).
  27. Guamán-Burneo M.C., Dussan K.J., Cadete R.M. et al. Xylitol production by yeasts isolated from rotting wood in the Galápagos islands, Ecuador, and description of Cyberlindnera galapagoensis, sp. nov. Antonie Van Leeuwenhoek. 2015. V. 108. P. 919–931. https://doi.org/10.1007/s10482-015-0546-8
  28. Gunde-Cimerman N., Oren A., Plemenitaš A. Adaptation to life at high salt concentrations in archaea, bacteria, and eukarya. 2005. https://doi.org/10.1007/1-4020-3633-7
  29. Gunde-Cimerman N., Plemenitaš A., Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. 2018. V. 42. P. 353–375. https://doi.org/10.1093/femsre/fuy009
  30. Held B., Jurgens J., Duncan S. et al. Assessment of fungal diversity and deterioration in a wooden structure at New Harbor, Antarctica. Polar Biology. 2005. V. 29. P. 526–531. https://doi.org/10.1007/s00300-005-0084-3
  31. Held B.W., Blanchette R.A. Deception Island, Antarctica, harbors a diverse assemblage of wood decay fungi. Fungal Biol. 2017. V. 121 (2). P. 145–157. https://doi.org/10.1016/j.funbio.2016.11.009
  32. Held B.W., Jurgens J.A., Arenz B.E. et al. Environmental factors influencing microbial growth inside the historic huts of Ross Island, Antarctica. Int. Biodeterior. Biodegradation. 2005. V. 55. P. 45–53. https://doi.org/10.1016/j.ibiod.2004.06.011
  33. Hellmann L., Agafonov L., Churakova O. et al. Regional coherency of boreal forest growth defines Arctic driftwood provenancing. Dendrochronologia. 2016. V. 39. P. 3–9. https://doi.org/10.1016/j.dendro.2015.12.010
  34. Hellmann L., Kirdyanov A.V., Büntgen U. Effects of boreal timber rafting on the composition of Arctic driftwood. Forests. 2016. V. 7 (11) P. 257–266. https://doi.org/10.3390/f7110257
  35. Hellmann L., Tegel W., Eggertsson Ó. et al. Tracing the origin of Arctic driftwood. J. Geophysical Res. Biogeosciences. 2013. V. 118 (1). P. 68–76. https://doi.org/10.1002/jgrg.20022
  36. Hellmann L., Tegel W., Geyer J. et al. Dendro-provenancing of Arctic driftwood. Quaternary Science Reviews. 2017. V. 162. P. 1–11. https://doi.org/10.1016/j.quascirev.2017.02.025
  37. Hellmann L., Tegel W., Kirdyanov A.V. et al. Timber logging in central Siberia is the main source for recent Arctic driftwood. Arctic Antarct. Alpine Res. 2015. V. 47. P. 449–460. https://doi.org/10.1657/aaar0014-063
  38. Henriksson G., Brännval E., Lennholm H. 2. The trees. V. 1. In: Ek M. etc. (eds). Wood chemistry and wood biotechnology. Berlin, N.Y., 2009, pp. 13–44.
  39. Index Fungorum. CABI Bioscience, 2022. http://www.indexfungorum.org. Accessed 13.09.2022.
  40. Karvinen S., Valkky E., Torniainen T. et al. Northwest Russian Forest Sector in a Nutshell. Working Papers of Finnish Forest Research Institute. 2006.
  41. Kejžar A., Grötli M., Tamás M.J. et al. HwHog1 kinase activity is crucial for survival of Hortaeawerneckii in extremely hyperosmolar environments. Fungal Genet. Biol. 2015. V. 74. P. 45–58. https://doi.org/10.1016/j.fgb.2014.11.004
  42. Kirtsideli I.Yu. Microfungi from soils of Heiss Island (Franz Joseph Land). Novosti Sistematiki Nizshikh Rasteniy. 2015. V. 49. P. 151–160 (in Russ.).
  43. Kirtsideli I.Yu., Abakumov E.V., Teshebaev Sh.B. et al. Microbial communities in regions of Arctic settlements. Gigiena i sanitariya. 2016. V. 95 (10). P. 923–929 (in Russ.).
  44. Kirtsideli I.Yu., Ilyushin V.A., Vlasov D.Yu. et al. Microfungi in the Soils of Chernevaya Taiga of Western Siberia. Mikologiya i fitopatologiya. 2022. V. 56 (2). P. 86–95 (in Russ.). https://doi.org/10.31857/S0026364822020076
  45. Kirtsideli I.Yu., Llukina E., Iliushin V.A. et al. Diversity of microfungi on driftwood in the coastal zone of the Greenland Sea (Svalbard Archipelago). Mikologiya i fitopatologiya. 2021. V. 55 (3). P. 178–188 (in Russ.).https://doi.org/10.31857/s0026364821030053
  46. Kirtsideli I.Yu., Vlasov D.Yu., Abakumov E.V. et al. Diversity and enzyme activity of microfungi from antarctic soils. Mikologiya i fitopatologiya. 2010. V. 44 (5). P. 387–397 (in Russ.).
  47. Kirtsideli I., Vlasov D., Barantsevich E. et al. Distribution of terrigenous microfungi in Arctic Seas. Mikologiya i fitopatologiya. 2012. V. 46 (5). P. 306–310 (in Russ.).
  48. Kirtsideli I.Yu., Vlasov D.Yu., Novozhilov Yu.K. et al. Assessment of anthropogenic influence on Antarctic mycobiota in areas of Russian polar stations. Contemporary Problems of Ecology. 2018. V. 11 (5). P. 449–457. https://doi.org/10.1134/S1995425518050074
  49. Kirtsideli I.Yu., Vlasov D.Yu., Zelenskaya M.S. et al. Assessment of anthropogenic invasion of microfungi in Arctic ecosystems (exemplified by Spitsbergen archipelago). Gigiena i sanitariya. 2020. V. 99 (2). P. 145–151 (in Russ.).https://doi.org/10.33029/0016-9900-2020-99-2-145-151
  50. Klán J., Baudišová D. Enzyme activity of mycelial cultures of saprotrophic macromycetes (Basidiomycotina). I. Methods of hydrolases estimation. Česká Mykol. 1990. V. 44 (4). P. 203–211.
  51. Kolosova M.I., Solovyeva N.G. The main anatomical features of the wood of deciduous trees and shrubs. SPb., 2013 (in Russ.).
  52. Krishnan A., Convey P., Gonzalez M. et al. Effects of temperature on extracellular hydrolase enzymes from soil microfungi. Polar Biology. 2018. V. 41. P. 537–551. https://doi.org/doi.org/10.1007/s00300-017-2215-z
  53. Linderholm H.W., Gunnarson B.E., Fuentes M. et al. The origin of driftwood on eastern and south-western Svalbard. Polar Science. 2021. V. 29. https://doi.org/10.1016/j.polar.2021.100658
  54. Ludley K.E., Robinson C.H. Decomposer Basidiomycota in Arctic and Antarctic ecosystems. Soil Biol. Biochem. 2008. V. 40. P. 11–29. https://doi.org/10.1016/j.soilbio.2007.07.023
  55. Malosso E., Waite I.S., English L. et al. Fungal diversity in maritime Antarctic soils determined using a combination of culture isolation, molecular fingerprinting and cloning techniques. Polar Biol. 2006. V. 29. P. 552–561. https://doi.org/10.1007/s00300-005-0088-z
  56. Mattsson J., Flyen A.C., Nunez M. Wood-decaying fungi in protected buildings and structures on Svalbard. Int. J. Medicinal Mushrooms. 2010. V. 29. P. 5–14.
  57. Methods of experimental mycology / V.I. Bilay (ed.). Naukova Dumka, Kiev, 1982 (in Russ.).
  58. Naranjo-Ortiz M.A., Gabaldón T. Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. Biol. Rev. Camb. Philos. Soc. 2019. V. 94 (6). P. 2101–2137. https://doi.org/10.1111/brv.12550
  59. Nikitin D.A., Semenov M.V. Characterization of Franz Josef Land soil mycobiota by microbiological palating and real-time PCR. Microbiology. 2022. V. 91 (1). P. 56–66.
  60. Pan Y., Ye H., Lu J. et al. Isolation and identification of Sydowia polyspora and its pathogenicity on Pinus yunnanensis in Southwestern China. J. Phytopathology. 2018. V. 166 (6). P. 383–395. https://doi.org/10.1111/jph.12696
  61. Pedersen N.B., Matthiesen H., Blanchette R.A. et al. Fungal attack on archaeological wooden artefacts in the Arctic-Implications in a changing climate. Sci. Rep. 2020. V. 10. P. 14577. https://doi.org/10.1038/s41598-020-71518-5
  62. Perini L., Gostinčar C., Gunde-Cimerman N. Fungal and bacterial diversity of Svalbard subglacial ice. Scientific Reports. 2019. V. 9 (1). P. 20230. https://doi.org/10.1038/s41598-019-56290-5
  63. Peterson B.J., Holmes R.M., McClelland J.W. et al. Increasing river discharge to the Arctic Ocean. Science. 2002. V. 13. P. 2171–2173. https://doi.org/10.1126/science.1077445
  64. Rämä T., Hassett B.T., Bubnova E. Arctic marine fungi: from filaments and flagella to operational taxonomic units and beyond. Botanica Marina. 2017. V. 60 (4). P. 433–452. https://doi.org/10.1515/bot-2016-0104
  65. Rämä T., Norden J., Davey M. et al. Fungi ahoy! Diversity on marine wooden substrata in the high North. Fungal Ecol. 2014. V. 8. P. 46–58. https://doi.org/10.1016/j.funeco.2013.12.002
  66. Raper K.B., Thom C.A. Manual of the Penicillia. The Williams and Wilkins Company, Baltimore, 1949.
  67. Richards T.A., Jones M.D.M., Leonard G. et al. Marine fungi: their ecology and molecular diversity. Ann. Rev. Marine Sci. 2012. V. 4. P. 495–522. https://doi.org/10.1146/annurev-marine-120710-100802
  68. Rovati J.I., Pajot H.F., Ruberto L. et al. Polyphenolic substrates and dyes degradation by yeasts from 25 de Mayo/King George Island (Antarctica). Yeast. 2013. V. 30. P. 459–470. https://doi.org/10.1002/yea.2982
  69. Sampaio J.P. Utilization of low molecular weight aromatic compounds by heterobasidiomycetous yeasts: taxonomic implications. Can. J. Microbiol. 1999. V. 45. P. 491–512. https://doi.org/10.1139/cjm-45-6-491
  70. Sazanova K.V., Senik S.V., Kirtsideli I.Yu. et al. Metabolomic profiling and lipid composition of Arctic and Antarctic strains of micromycetes Geomyces pannorum and Thelebolus microsporus grown at different temperatures. Microbiology. 2019. V. 88. P. 282–291. https://doi.org/10.1134/S0026261719030111
  71. Shakhova N.V., Volobuev S.V. Revealing new active and biotechnologically perspective producers of oxidative and cellulolytic enzymes among pure cultures of xylotrophic Agaricomycetes from the Southern Non-Chernozem zone of the European part of Russia. Current Res. Environm. Appl. Mycology (J. Fungal Biol.) 2020. V. 10 (1). P. 113–119. https://doi.org/10.11910.5943/cream/10/1/12
  72. Shitikov V.K., Zinchenko T.D., Rozenberg G.S. Macroecology of river communities: concepts, methods, models. Tolyatti, 2011 (in Russ.).
  73. Silva A.C., Henriques J., Diogo E.L. et al. First report of Sydowia polyspora causing disease on Pinus pinea shoots. Forest Pathology. 2019. V. 50. e12570. https://doi.org/10.1111/efp.12570
  74. Sprenger M., Kasper L., Hensel M. et al. Metabolic adaptation of intracellular bacteria and fungi to macrophages. Int. J. Med. Microbiol. 2018. V. 308 (1). P. 215–227. https://doi.org/10.1016/j.ijmm.2017.11.001
  75. Stokland J., Siitonen J., Jonsson B. Biodiversity in dead wood (ecology, biodiversity and conservation). Univ. Press, Cambridge, 2012. https://doi.org/10.1017/CBO9781139025843
  76. Teppo R., Nordenb J., Marie L. et al. Fungi ahoy! Diversity on marine wooden substrata in the high North. Fungal Ecol. V. 8. P. 46–58. https://doi.org/10.1016/j.funeco.2013.12.002
  77. Tosi S., Casado B., Gerdol R. et al. Fungi isolated from Antarctic mosses. Polar Biol. 2002. V. 25. P. 262–268. https://doi.org/10.1007/s00300-001-0337-8
  78. Troncoso E., Barahona S., Carrasco M. et al. Identification and characterization of yeasts isolated from the South Shetland Islands and the Antarctic Peninsula. Polar Biol. 2017. V. 40. P. 649–658. https://doi.org/10.1007/s00300-016-1988-9
  79. Tsuji M., Tsujimoto M., Imura S. Cystobasidium tubakii and Cystobasidium ongulense, new basidiomycetous yeast species isolated from East Ongul Island, East Antarctica. Mycoscience. 2017. V. 58. P. 103–110. https://doi.org/10.1016/j.myc.2016.11.002
  80. White T.J., Bruns T., Lee S. et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M. Innis etc. (eds.). PCR Protocols: A Guide to methods and applications. Academic Press, San Diego, 1990, pp. 315–322.
  81. Yatsenko-Khmelevskiy A. A. Fundamentals and methods of anatomical study of wood. Moscow, Lenindrad, 1954 (in Russ.).
  82. Александрова В.Д. (Aleksanrova) Геоботаническое районирование Арктики и Антарктики. Л.: Наука, 1977, 188 с.
  83. Говоруха Л.С. (Govorukha) Ландшафтно-географическая характеристика Земли Франца-Иосифа // Тр. ААНИИ. Проблемы полярной географии. 1968. Т. 285. С. 86–117.
  84. Говоруха Л.С. (Govorukha) Земля Франца-Иосифа. М.: Советская Арктика, 1970. С. 328–359.
  85. Дрюпин В.Г. (Dryupin) Земля Франца-Иосифа. Архангельск: СГМУ, 2004. 135 с.
  86. Кирцидели И.Ю. (Kirtsideli) Микроскопические грибы в почвах острова Хейса (земля Франца-Иосифа) // Новости систематики низших растений. 2015. Т. 49. С. 151–160.
  87. Кирцидели И.Ю., Абакумов Е.В., Тешебаев Ш.Б. и др. (Kirtsideli et al.) Микробные сообщества в районах арктических поселений // Гигиена и санитария. 2016. Т. 95. № 10. С. 923–929.
  88. Кирцидели И.Ю., Власов Д.Ю., Абакумов Е.В. и др. (Kirtsideli et al.) Разнообразие и ферментативная активность микромицетов из слаборазвитых почв береговой Антарктики // Микология и фитопатология. 2010. Т. 44. № 5. С. 387–397.
  89. Кирцидели И.Ю., Власов Д.Ю., Баранцевич Е.П. и др. (Kirtsideli et al.) Распространение терригенных микромицетов в водах Арктических морей // Микология и фитопатология. 2012. Т. 46. № 5. С. 306–310.
  90. Кирцидели И.Ю., Власов Д.Ю., Зеленская М.С. и др. (Kirtsideli et al.) Оценка антропогенной инвазии микроскопических грибов в Арктические экосистемы (на примере пос. Баренцбург, архипелаг Шпицберген) // Гигиена и санитария. 2020. Т. 99. № 2. С. 145–151.
  91. Кирцидели И.Ю., Власов Д.Ю., Ильюшин В.А. и др. (Kirtsideli et al.) Микроскопические грибы в почвах черневой тайги Западной Сибири // Микология и фитопатология. 2022. Т. 56 (2). С. 86–95.
  92. Кирцидели И.Ю., Лукина Е.Г., Ильюшин В.А. и др. (Kirtsideli et al.) Разнообразие микроскопических грибов на древесине в береговой зоне Гренландского моря (архипелаг Шпицберген) // Микология и фитопатология. 2021. Т. 55. № 3. С. 178–188.
  93. Колосова М.И., Соловьева Н.Г. (Kolosova, Solovyeva) Основные анатомические признаки древесины лиственных деревьев и кустарников. СПб., 2013. 104 с.
  94. Методы экспериментальной микологии (Methods) / В.И. Билай (ред.). Киев: Наукова думка, 1982. 550 с.
  95. Чилингаров A.Н. (Chilingarov) Очерки по географии Арктики. M., 2009. 56 с.
  96. Шитиков В.К., Зинченко Т.Д., Розенберг Г.С. (Shitikov et al.) Макроэкология речных сообществ: концепции, методы, модели. Тольятти, 2011. 255 с.
  97. Яценко-Хмелевский А.А. (Yatsenko-Khmelevskiy) Основы и методы анатомического исследования древесины. М.-Л., 1954. 337 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (606KB)
3.

Download (1MB)
4.

Download (28KB)
5.

Download (111KB)
6.

Download (30KB)
7.

Download (876KB)

Copyright (c) 2023 И.Г. Панькова, И.Ю. Кирцидели, В.А. Ильюшин, М.С. Зеленская, Д.Ю. Власов, М.В. Гаврило, Е.П. Баранцевич

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies