Study of electrical properties and characterization of a metal-polymer conductor based on silver-containing nanowires

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The possibility of forming a conductive metal-polymer composite based on an array of intersecting silver-containing nanowires has been demonstrated. It has been determined that the electrical and mechanical characteristics of the composites depend both on the deposition time and on the ratio of the anode to cathode areas. The resulting metal-polymer composites had mechanical characteristics exceeding those of polymer track membranes made of polyethylene terephthalate. At the same time, with an increase in the ratio of anode to cathode areas and an increase in deposition time, the samples exhibit a decrease in the values of electrical conductivity (0.0025 Ω-1 – at 100 growth cycles, 0.0033 Ω-1 – at 50 cycles), strength (90 MPa – at 100 cycles, 99 MPa – at 50 cycles) and elastic modulus (4.7 GPa – at 100 cycles, 5.4 GPa – at 50 cycles). The data obtained indicate that conductive silver-containing nanowires can be reinforcing structures for conductive metal-polymer composites with high electrical conductivity values, promising for use in flexible electronics elements.

Авторлар туралы

D. Panov

NRC “Kurchatov Institute”

Хат алмасуға жауапты Автор.
Email: dggamer@mail.ru

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics

Ресей, Moscow

I. Volchkov

NRC “Kurchatov Institute”

Email: dggamer@mail.ru

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics

Ресей, Moscow

N. Kovalets

Moscow Pedagogical State University

Email: dggamer@mail.ru
Ресей, Moscow

P. Podkur

NRC “Kurchatov Institute”

Email: dggamer@mail.ru

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics

Ресей, Moscow

I. Koshelev

NRC “Kurchatov Institute”

Email: dggamer@mail.ru

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics

Ресей, Moscow

V. Kanevskiy

NRC “Kurchatov Institute”

Email: dggamer@mail.ru

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics

Ресей, Moscow

Әдебиет тізімі

  1. Goki E., Fanchini G., Manish C. // Nature Nanotechnol. 2008. V. 3. P. 270. https://doi.org/10.1038/nnano.2008.83
  2. Ye S., Rathmell A.R., Chen Z. et al. // Adv. Mater. 2014. V. 26. P. 6670. https://doi.org/10.1002/adma.201402710
  3. Langley D., Giusti G., Mayousse C. et al. // Nanotechnology. 2013. V. 24. P. 452001. https://doi.org/10.1088/0957-4484/24/45/452001
  4. Hecht D.S., Hu L., Irvin G. // Adv Mater. 2011. V. 23. P. 1482. https://doi.org/10.1002/adma.201003188
  5. McCoul D., Hu W., Gao M. et al. // Adv. Electron. Mater. 2016. V. 2. P. 1500407. https://doi.org/10.1002/aelm.201500407
  6. Kumar A., Zhou P. // ACS Nano. 2010. V. 4. P. 11. https://doi.org/10.1021/nn901903b
  7. Mayousse C., Celle C., Moreau E. et al. // Nanotechnology. 2013. V. 24. P. 215501. https://doi.org/10.1088/0957-4484/24/21/215501
  8. Kwon J., Suh Y.D., Lee J. et al. // J. Mater. Chem. 2018. V. 6. P. 7445. https://doi.org/10.1039/c8tc01024b
  9. Celle C., Mayousse C., Moreau E. et al. // Nano Res. 2012. V. 5. P. 427. https://doi.org/10.1007/s12274-012-0225-2
  10. Jiu J., Suganuma K. // IEEE Trans. Components, Packaging Manufactur. Technol. 2016. V. 6. P. 1733. https://doi.org/10.1109/tcpmV.2016.2581829
  11. Lan W., Chen Y., Yang Z. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 7. P. 6644. https://doi.org/10.1021/acsami.6b16853
  12. Kaikanov M., Amanzhulov B., Demeuova G. et al. // Nanomaterials (Basel). 2020. V. 10. P. 2153. https://doi.org/10.3390/nano10112153
  13. Kim Y.J., Kim G., Kim H.-K. // Metals. 2019. V. 9. P. 1073. https://doi.org/10.3390/met9101073
  14. Seo V.H., Lee S., Min K.H. et al. // Sci. Rep. 2016. V. 6. P. 29464. https://doi.org/10.1038/srep29464
  15. Pham S.H., Ferri A., Da A. et al. // Adv. Mater. Interfaces. 2022. V. 9. P. 2200019. https://doi.org/10.1002/admi.202200019
  16. Xu H., Shang H., Wang C., Du Y. // Adv. Funct. Mater. 2020. V. 30. P. 2000793. https://doi.org/10.1002/adfm.202000793
  17. Maisch P., Tam K., Lucera L. et al. // Org. Electron. 2016. V. 38. P. 139. https://doi.org/10.1016/j.orgel.2016.08.006
  18. Zhang L., Song V., Shi L. et al. // J. Nanostruct. Chem. 2021. V. 11. P. 323. https://doi.org/10.1007/s40097-021-00436-3
  19. Lee J., Lee P., Lee H. et al. // Nanoscale. 2012. V. 4. P. 6408. https://doi.org/10.1039/c2nr31254a
  20. Lee P., Lee J., Lee H. et al. // Adv. Mater. 2012. V. 24. P. 3326. https://doi.org/10.1002/adma.201200359
  21. Mitrofanov A.V., Apel P.Y., Blonskaya I.V. et al. // Tech. Phys. 2006. V. 51. P. 1229. https://doi.org/10.1134/S1063784206090209
  22. Doludenko I.M., Volchkov I.S., Turenko B.A. et al. // Mater. Chem. Phys. 2022. V. 287. P. 126285. https://doi.org/10.1016/j.matchemphys.2022.126285
  23. Буркат Г.К. Электроосаждение драгоценных металлов. СПб.: Политехника, 2009. 21 с.
  24. Natter H., Hempelmann R. // J. Phys. Chem. 1996. V. 100. P. 19525. https://doi.org/10.1021/jp9617837
  25. Глинка Н.Л. Общая химия. М.: Интеграл-пресс, 2003. 727 c.
  26. Smits F.M. // Bell Syst. Tech. J. 1958. V. 37. P. 711.
  27. Акименко С.Н., Мамонова Т.И., Орелович О.Л. и др. // ВИНИТИ. Сер. Критические технологии. Мембраны. 2002. Т. 15. С. 21.
  28. Doludenko I.M. // Inorg. Mater.: Appl. Res. 2022. V. 13. P. 531. https://doi.org/10.1134/S2075113322020125
  29. Wakamoto K., Mochizuki Y., Otsuka V. et al. // Materials. 2020. V. 13. P. 4061. https://doi.org/10.3390/ma13184061

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>